Skip to main content
Log in

A new view on karst genesis

Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Karst terrains and their specific landforms, such as sinkholes and caves, have been thoroughly studied from the second half of the nineteenth century. However, karst genesis remains a puzzling issue to this day. The results of the recent studies of ocean floor and the results obtained by drilling deep oil boreholes have raised doubts about the existing explanations of the karst landforms development and encouraged the emergence of new views on this subject matter. According to the new hypothesis, the majority of karst landforms were formed at great depths beneath sea level where dissolution of carbonates increases dramatically. Underwater dissolution first caused the formation of karst depressions and the primary network of karst conduits elongated along the existing fractures. This process was followed by further expansion of the conduits and the formation of spacious caves due to the water regression and the action of turbulent flows. It is considered that the introduction of the new concept would accelerate the development of karstology and improve the principles and methods for solving numerous practical problems such as the abstraction of quality drinking water and the research of oil, gas and bauxite deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) (2010) Advances in research in karst media. Springer, Berlin

    Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Bella P (1998) Genetic type of caves in Slovakia. Acta Carsologica 27(2):15–23

    Google Scholar 

  • Berger WH (1967) Foraminiferal ooze: solution at depths. Science 156:383–385

    Article  Google Scholar 

  • Berner RA, Morse JW (1974) Dissolution kinetics of calcium carbonate in sea water; IV, Theory of calcite dissolution. Am J Sci 274:108–134

    Article  Google Scholar 

  • Bögli A (1964) Mischungkorrosion–ein beitrag zum verstärkungsproblem. Erdkd 18:83–92

    Google Scholar 

  • Bögli A (1980) Karst hydrology and physical speleology. Springer, Berlin

    Book  Google Scholar 

  • Bramlette MN (1961) Pelagic sediments. In: Sears M (ed) Oceanography. American Association for the Advanced Science Publications, Washington, pp 345–366

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecol 35:445–453

    Article  Google Scholar 

  • Cramer H (1941) Die systematik der karstdolinen. Neues Jahrhbuch Mineral Geol Paläontol 85(1):293–382

    Google Scholar 

  • Cvijić J (1893) Das karstphanomen. Versuch einer morphologichen monographie, geographische abhandlungen herausgegeben von A Pench, Bd, VH, 3, Wien

  • Cvijić J (1895a) Caves and subsurface hydrography of Eastern Serbia (in Serbian). J Serbian R Acad Sci 46:1–101

    Google Scholar 

  • Cvijić J (1895b) Karst, geographic monograph (in Serbian). Royal Publishing House of Serbia, Belgrade

    Google Scholar 

  • Cvijić J (1900) Poljes of western Bosnia and Herzegovina (in Serbian). J Serbian R Acad Sci 59:59–182

    Google Scholar 

  • Cvijić J (1918) Hydrographie souterraine et evolution morphologique du karst. Hydrographie souterraine et evolution morphologique du karst 6(4):375–426

    Google Scholar 

  • Cvijić J (1960) La géographique des terreains calcaires. Académie Serbe des sciences et des arts, Belgrade

    Google Scholar 

  • Davis W (1930) Origin of limestone caves. Geol Soc Am Bull 41:475–628

    Google Scholar 

  • Diener K (1886) Libanon: Grundlinien der physischen geographie und geologie von Mittel–Syrien. Hölder, Wien

    Google Scholar 

  • Dreybrodt W (1988) Processes in karst systems, physics, chemistry, and geology series. Springer, Berlin

    Book  Google Scholar 

  • Dreybrodt W, Gabrovšek F (2000) Dynamics of the evolution of single karst conduits. In: Klimchouk AV, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis, evolution of karst aquifers. National Speleological Society of America, Huntsville, pp 184–193

    Google Scholar 

  • Dubljević V (2001) Hydrogeological characteristics of Boka Bay (in Serbian). Master thesis, University of Belgrade, Belgrade

  • Eraso A (1986) Metodo de prediccion de las direcciones principales de drenaje en el karst (method for predicting the main directions of drainage in karst). Kobie 15:15–122

    Google Scholar 

  • Ford D (2007) Jovan Cvijić and the founding of karst geomorphology. Environ Geol 51:675–684

    Article  Google Scholar 

  • Ford D, Ewers R (1978) The development of limestone cave system in the dimensions of lenght and breadth. Can J Earth Sci 15:1783–1798

    Article  Google Scholar 

  • Ford D, Williams P (1989) Karst geomorphology and hydrogeology. Unwin Hyman, London

    Book  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Gams I (1966) Factors and dynamics of corrosion of the carbonatic rocks in the Dinaric and Alpine karst of Slovenia (Yugoslavia) (in Slovenian). Geograf Vesn 38:11–68

    Google Scholar 

  • Gams I (2000) Doline morphogenetic processes from global and local viewpoint. Acta Carstologica 29(2):123–138

    Google Scholar 

  • Grubić A (1975) Tectonics of Yugoslavia. Acta Geol 41:365–384

    Google Scholar 

  • Gunn J (ed) (2004) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York

    Google Scholar 

  • Howard AD (1964) Processes of limestone cave development. Int J Speleol 1:47–60

    Article  Google Scholar 

  • Huntoon PW (1995) Is it appropriate to apply porous media groundwater circulation models to karstic aquifers? In: El–Kadi AI (ed) Groundwater models for resources analysis and management. CRC Lewis Publisher, Boca Raton, pp 339–358

    Google Scholar 

  • Jennings JN (1985) Karst geomorphology. Basil Blackwell, Oxford

    Google Scholar 

  • Klimchouk AB (2000) The formation of epikarst and its role in vadose speleogenesis. In: Klimchouk AV, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis, evolution of karst aquifers. National Speleological Society of America, Huntsville, pp 91–99

    Google Scholar 

  • Knez M (1996) Bedding–plane impact on the development of karst caves. Dissertation, University of Ljubljana, Ljubljana

  • Kraus F (1887) Über dolinen. Verh Geol Reichsanst 2:54–62

    Google Scholar 

  • LaMoreaux PE, LaMoreaux JW (1998) A history of karst studies. Focus Geogr 45(2):22–27

    Article  Google Scholar 

  • Land AL, Charles KP, Hobson B (1995) Genesis of a submarine sinkhole without subaerial exposure: straits of Florida. Geology 23(10):949–951

    Article  Google Scholar 

  • Lješević M (2004) Karst of Piva (in Serbian). Montenegrin Academy of Sciences and Arts, Podgorica

    Google Scholar 

  • Lowe D (2000) The speleo–inception concept. In: Klimchouk AV, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis, evolution of karst aquifers. National Speleological Society of America, Huntsville, pp 65–75

    Google Scholar 

  • Martel ÉA (1890) Les Cévennes. C Lacour, Paris

    Google Scholar 

  • Martel E (1921) Nouveau trait des eaux sonterraines. Editions Doin, Paris

    Google Scholar 

  • Michauda F, Chaberta A, Collota J, Sallarèsa V, Fluehb E, Charvisa P, Graindorgea D, Gustcherc M, Bialasb J (2005) Fields of multi–kilometer scale sub–circular depressions in the Carnegie Ridge sedimentary blanket: effect of underwater carbonate dissolution? Mar Geol 216(4):205–219

    Article  Google Scholar 

  • Milanović S (2009) Report on the field work in the “Visegrad” hydropower plant–hydrogeology, monitoring, diving, hydrometry, tracer tests, underwater surveying. Institute for Water Management “Jaroslav Cerni”, Belgrade

  • Milanović P (2006) Karst of Eastern Herzegovina and Dubrovnik (in Serbian). ASOS, Belgrade

    Google Scholar 

  • Milanović S (2007) Hydrogeological characteristicts of some deep siphonal springs in Serbia and Montenegro karst. Environ Geol 51:755–759

    Article  Google Scholar 

  • Milanović S (2010) Creation of the physical model of a karst aquifer in the example of Beljanica Mt. (Eastern Serbia) (in Serbian). Dissertation, University of Belgrade

  • Milovanović B (1965) Epeirogenic and orogenic dynamics in the area of External Dinarides and the problems of paleokarstification and geological evolution of holokarst (in Serbian). J Geol Surv Serbia 4(5):5–44

    Google Scholar 

  • Mojsisovics E, Tietze E, Bittner A (1880) Grundlinien der geologie von bosnien und der herzegovina. Jb der geologishen Reichsanstalt, Vienna

    Google Scholar 

  • Palmer AN, Audra P (2003) Patterns of caves. In: Gunn J (ed) Encyclopedia of caves and karst sciences. Fitzroy Dearborn, New York, pp 573–575

    Google Scholar 

  • Palmer AN, Palmer MV, Sasowsky ID (eds) (1999) Karst modelling. Special Publication 5, Karst Waters Institute, Charlesl Town

  • Petrović J (1968) Fundamentals of speleology (in Serbian). Institute for Textbook Publishing of the Socialist Republic of Serbia, Belgrade

    Google Scholar 

  • Plummer LN, Wigley TML (1976) The dissolution of calcite in CO2–saturated solutions at 25 °C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40:191–202

    Article  Google Scholar 

  • Pytkowicz RM (1970) On the carbonate compensation depth in the Pacific Ocean. Geochim Cosmochim Acta 34:836–839

    Article  Google Scholar 

  • Sauro U (2012) Closed depressions in karst areas. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier, Waltham, pp 140–155

    Chapter  Google Scholar 

  • Simms M (2002) The origin of enigmatic, tubular, lake–shore karren: a mechanism for rapid dissolution of limestone in carbonate–saturated waters. Phys Geogr 23(1):1–20

    Google Scholar 

  • Stepanović B (1965) Methods of hydrogeological exploration (in Serbian). Faculty of Mining and Geology, Belgrade

    Google Scholar 

  • Supper R, Motschka K, Bauer-Gottwein P, Ahl A, Römer A, Neumann-Gondwe B, Merediz Alonso G, Kinzelbach W (2008) Spatial mapping of karstic cave structures by means of airborne electromagnetics: an emerging technology to support protection of endangered karst Systems. Geophys Res Abst 10:11–26

    Google Scholar 

  • Sweeting MM (1972) Karst landforms. Macmillan, London

    Google Scholar 

  • Swinnerton A (1932) Origin of limestone caverns. Bull Geol Soc Am 43:662–693

    Google Scholar 

  • Tietze E (1880) Zur geologie der karsterscheinungen. Hölder, Wien

    Google Scholar 

  • Vajoczki S, Ford D (2000) Underwater dissolutional pitting on dolostones, Lake Huron–Georgian Bay, Ontario. Phys Geogr 21(5):418–432

    Google Scholar 

  • Vlahović V (1975) Karst of Niksic polje and its hydrogeology (in Serbian). The Society of Sciences and Arts of Montenegro, Titograd

    Google Scholar 

  • Vučković D, Melentijević M, Milovanović M (2004) Current construction state in the Drina river basin. Vodoprivr 36(1):39–49

    Google Scholar 

  • Waisse JG (1948) Les bauxites de l’Europe centrale (Province dinarique et Hongrie). Dissertation, University of Lausanne, Lausanne

  • Waltham AC (1981) Origin and development of limestones caves. Prog Phys Geogr 5(2):242–256

    Article  Google Scholar 

  • Waltham AC, Bell F, Culshaw M (2005) Sinkholes and subsidence: karst and cavernous rocks in engineering and construction. Springer-Praxis Publishing, Chichester

    Google Scholar 

  • Weyl PK (1958) The solution kinetics of calcite. J Geol 66:163–176

    Article  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Google Scholar 

  • Williams PW (1972) Morphometric analysis of polygonal karst in New Guinea. Geol Soc Am Bull 83:761–796

    Article  Google Scholar 

  • Williams PW (1983) The role of subcutaneous zone in karst hydrology. J Hydrol 61:45–67

    Article  Google Scholar 

  • Wise SW (2003) Carbonate compensation depth. In: Middleton GV (ed) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Press, Dordrecht, pp 88–89

    Google Scholar 

  • Worthington SRH (2004) Hydraulic and geological factors influencing conduit flow depth. Cave Karst Sci 31(3):123–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan M. Radulović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radulović, M.M. A new view on karst genesis. Carbonates Evaporites 28, 383–397 (2013). https://doi.org/10.1007/s13146-012-0125-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-012-0125-2

Keywords

Navigation