Skip to main content

Advertisement

Log in

Clastic sediment transport and storage in fluviokarst aquifers: an essential component of karst hydrogeology

  • Review
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Carbonate aquifers with well-developed conduit systems carry a flux of clastic sediment as an intrinsic aspect of the functioning of the aquifer. Sources of clastic sediments include sediments carried by sinking streams, soil washdown from the epikarst, plug injection by sinkhole piping failures, residual insoluble material from the dissolution of the limestone, and sediment backflooded from surface streams. The conduit system acts as a mixing chamber where the injected materials are sorted and rearranged. Information on the sediments and their transport processes can be obtained by investigating the source areas, by inspection of cave sediments, and by monitoring clastic sediment discharged from springs as a function of flow conditions. The engine that drives the sediment transport system is storm recharge in the ground water basin drained by the conduit system. Fine-grained clastics move during ordinary storms and can be captured easily at springs, but movement of coarser materials requires high-intensity, therefore infrequent, storms so that most of the sediment flux is episodic with long periods of storage interspersed with short periods of movement. Fluid mechanics provides the basis for calculations of both bedload and suspended load components. However, these calculations become complex because of the need to take into account discharge-dependent shifts from pipe flow to open channel flow and the effect of irregularities in conduit morphology and blockages due to breakdown and other barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Albéric P (2004) River backflooding into a karst resurgence (Loiret, France). J Hydrol 286:194–202

    Google Scholar 

  • Amraoui F, Razack M, Bouchaou L (2003) Turbidity dynamics in karstic systems. Example of Ribaa and Bittit springs in the Middle Atlas (Morocco). Hydrol Sci J 48:971–984

    Google Scholar 

  • Anthony DM, Granger DE (2004) A late Tertiary origin for multilevel caves along the western escarpment of the Cumberland Plateau, Tennessee and Kentucky, established by cosmogenic 26Al and 10Be. J Cave Karst Stud 66:45–55

    Google Scholar 

  • Aquilina L, Ladouche B, Dorfliger N (2005) Recharge processes in karstic systems investigated through the correlation of chemical and isotopic composition of rain and spring-waters. Appl Geochem 20:2189–2206

    Google Scholar 

  • Aquilina L, Ladouche B, Dorfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327:472–485

    Google Scholar 

  • Ashworth PJ, Ferguson RI (1989) Size-selective entrainment of bed load in gravel bed streams. Water Resour Res 25:627–634

    Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Google Scholar 

  • Atkinson TC, Smart PL, Wigley TML (1983) Climate and natural radon levels in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 15:487–502

    Google Scholar 

  • Atteia O, Kozel R (1997) Particle size distributions in waters from a karstic aquifer: from particles to colloids. J Hydrol 201:102–119

    Google Scholar 

  • Atteia O, Perret D, Adatte T, Kozel R, Rossi P (1998) Characterization of natural colloids from a river and spring in a karstic basin. Environ Geol 34:257–269

    Google Scholar 

  • Back W (1981) Hydromythology and ethnohydrology in the New World. Water Resour Res 17:257–287

    Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics. US Geol Surv Prof Pap 422-I:37

    Google Scholar 

  • Barnes HH Jr (1967) Roughness characteristics of natural channels. US Geol Surv Water-Supply Pap 1849:213

    Google Scholar 

  • Berger GW, Pérez-González A, Carbonell E, Arsuaga JL, Bermúdez de Castro J-M, Ku T-L (2008) Luminescence chronology of cave sediments at the Atapuerca paleoanthropological site, Spain. J Human Evol 55:300–311

    Google Scholar 

  • Bono P, Percopo C (1996) Flow dynamics and erosion rate of a representative karst basin (Upper Aniene River, Central Italy). Environ Geol 27:210–218

    Google Scholar 

  • Boon JM (1977) Down to a sunless sea. Stalactite Press, Edmonton, p 105

    Google Scholar 

  • Bosch RF, White WB (2004) Lithofacies and transport of clastic sediments in karstic aquifers. In: Sasowsky ID, Mylroie J (eds) Studies of cave sediments. Kluwer Academic, New York, pp 1–22

    Google Scholar 

  • Bottrell S, Hardwick P, Gunn J (1999) Sediment dynamics in the Castleton karst, Derbyshire, UK. Earth Surf Process Landf 24:745–759

    Google Scholar 

  • Bouchaou L, Mangin A, Chauve P (2002) Turbidity mechanism of water from a karstic spring: example of the Ain Asserdoune spring (Morocco). J Hydrol 265:34–42

    Google Scholar 

  • Boyer DG, Kucynska E (2003) Storm and seasonal distributions of fecal coliforms and Cryptosporidium in a spring. J Am Water Resour Assoc 39:1449–1456

    Google Scholar 

  • Brancelj A (2006) The epikarst habitat in Slovenia and the description of a new species. J Nat Hist 40:403–413

    Google Scholar 

  • Brucker RW, Hess JW, White WB (1972) Role of vertical shafts in movement of ground water in carbonate aquifers. Ground Water 10(6):5–13

    Google Scholar 

  • Bull PA (1978) A quantitative approach to scanning electron microscope analysis of cave sediments. In: Whalley WB (ed) Scanning electron microscopy in the study of sediments. Geo Abstracts, Norwich, pp 201–226

    Google Scholar 

  • Bull PA (1981) Some fine-grained sedimentation phenomena in caves. Earth Surf Process Landf 6:11–22

    Google Scholar 

  • Carling PA, Hoffman M, Silke-Blatter A (2002) Initial motion of boulders in bedrock channels. In: House KP, Webb RH, Baker VR, Levich DR (eds) Ancient floods, modern hazards: principles and applications of paleoflood hydrology. Amer Geophys Union, Washington, D.C., pp 147–160

    Google Scholar 

  • Chandler DG, Bisogni JJ (1999) The use of alkalinity as a conservative tracer in a study of near-surface hydrologic change in tropical karst. J Hydrol 216:172–182

    Google Scholar 

  • Chess DL, Chess CA, Sasowsky ID, Schmidt VA, White WB (2010) Clastic sediments in the Butler Cave-Sinking Creek System, Virginia, USA. Acta Carsol 39:11–26

    Google Scholar 

  • Collier CR, Flint RF (1964) Fluvial sedimentation in Mammoth Cave, Kentucky. US Geol Surv Prof Pap 475-D:141–143

    Google Scholar 

  • Costa JE (1983) Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front range. Geol Soc Am Bull 94:986–1004

    Google Scholar 

  • Dasher GR (2001) The caves and karst of Pendleton County. W Va Speleol Surv Bull 15:404

    Google Scholar 

  • Davies WE, Chao ECT (1959) Report on sediments in Mammoth Cave, Kentucky. US Geol Survey Admin Rept to Natl Park Service :117

  • Davis RK, Hamilton S, Van Brahana J (2005) Escherichia coli survival in mantled karst springs and streams, northwest Arkansas Ozarks, USA. J Am Water Resour Assoc 41:1279–1287

    Google Scholar 

  • Dell’Oca S (1961) Riempimenti naturali di grotte. Rassegna Speleologica Italiana. Como, Italy, p 277

    Google Scholar 

  • Dietrich WE (1982) Settling velocity of natural particles. Water Resour Res 18:1615–1626

    Google Scholar 

  • Dogwiler T, Wicks CM (2004) Sediment entrainment and transport in fluviokarst systems. J Hydrol 295:163–172

    Google Scholar 

  • Dogwiler T, Wicks CM (2005) Thermal variation in the hyporheic zone of a karst stream. Speleogenesis Evol Karst Aquifers 3(1):1–11

    Google Scholar 

  • Dorale JA, Edwards RL, Alexander EC Jr, Shen C–C, Richards DA, Cheng H (2007) Uranium-series dating of speleothems: current techniques, limits & applications. In: Mylroie JE, Sasowsky ID (eds) Studies of cave sediments. Springer, Dordrecht, pp 177–197

    Google Scholar 

  • Drysdale R, Pierotti L, Piccini L, Baldacci F (2001) Suspended sediments in karst spring waters near Massa (Tuscany), Italy. Environ Geol 40:1037–1050

    Google Scholar 

  • Dussart-Baptista L, Massei N, Dupont JP, Jouenne T (2003) Transfer of bacteria-contaminated particles in a karst aquifer: evolution of contaminated materials from a sinkhole to a spring. J Hydrol 284:285–295

    Google Scholar 

  • Einsiedl F (2005) Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers. J Hydrol 312:312–321

    Google Scholar 

  • Exley S (1994) Caverns measureless to man. Cave Books, St Louis, p 325

    Google Scholar 

  • Fairchild IJ, Baker A (2012) Speleothem science. Wiley-Blackwell, Chichester, p 431

    Google Scholar 

  • Farr M (1991) The darkness beckons. Cave Books, St. Louis, p 280

    Google Scholar 

  • Farrant AR, Smart PL (2011) Role of sediment in speleogenesis: sedimentation and paragenesis. Geomorphology 134:79–93

    Google Scholar 

  • Ferguson RI (2005) Estimating critical stream power for bedload transport calculations in gravel-bed Rivers. Gemorphology 70:33–41

    Google Scholar 

  • Ford DC, Ewers EO (1978) The development of limestone caves systems in the dimensions of length and breadth. Can J Earth Sci 15:1783–1798

    Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley & Sons, Chichester, p 562

    Google Scholar 

  • Frank R (1971) The clastic sediments of the Wellington Caves, New South Wales. Helictite 9:3–26

    Google Scholar 

  • Frank RM (1972) Sedimentary and morphological development of the Borenore Caves, New South Wales. Helictite 10:75–92

    Google Scholar 

  • Frank R (1974) Sedimentary development in the Walli Caves, New South Wales. Helictite 12:3–30

    Google Scholar 

  • Frank R (1975) Late Quaternary climate change: evidence from cave sediments in central eastern New South Wales. Aust Geogr Stud 13:154–168

    Google Scholar 

  • Furley PA (1987) Impact of forest clearance on the soils of tropical cone karst. Earth Surf Process Landf 12:523–529

    Google Scholar 

  • Gale SJ (1984) The hydraulics of conduit flow in carbonate aquifers. J Hydrol 70:309–327

    Google Scholar 

  • Gillieson D (1986) Cave sedimentation in the New Guinea highlands. Earth Surf Process Landf 11:533–543

    Google Scholar 

  • Göppert N, Goldscheider N (2008) Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46:61–68

    Google Scholar 

  • Graf WH (1971) Hydraulics of sediment transport. McGraw Hill, New York, p 509

    Google Scholar 

  • Granger DE, Muzikar PF (2001) Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet Sci Lett 188:269–281

    Google Scholar 

  • Granger DE, Kirchner JW, Finkel RC (1997) Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology 25:107–110

    Google Scholar 

  • Granger DE, Fabel D, Palmer AN (2001) Pliocene-Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments. Geol Soc Am Bull 113:825–836

    Google Scholar 

  • Groves C, Meiman J (2005) Weathering, geomorphic work, and karst landscape evolution in the Cave City groundwater basin, Mammoth Cave, Kentucky. Geomorphology 67:115–126

    Google Scholar 

  • Gulley J, Martin JB, Screaton EJ, Moore PJ (2011) River reversals into karst springs: a model for cave enlargement in eogenetic karst aquifers. Geol Soc Am Bull 123:457–467

    Google Scholar 

  • Gustafsson O, Gschwend PM (1997) Aquatic colloids: concepts, definitions, and current challenges. Limnol Oceanogr 42:519–528

    Google Scholar 

  • Gutierrez M, Neill H, Grand RV (2004) Metals in sediments of springs and cave streams as environmental indicators in karst areas. Environ Geol 46:1079–1085

    Google Scholar 

  • Halihan T, Wicks CM (1998) Modeling of storm responses in conduit flow aquifers with reservoirs. J Hydrol 208:82–91

    Google Scholar 

  • Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox cave system (Missouri, USA). J Hydrol 204:24–36

    Google Scholar 

  • Harding KA (1993) Impacts of primary deforestation upon limestone slopes in northern Vancouver Island, British Columbia. Environ Geol Water Sci 21:137

    Google Scholar 

  • Hart EA, Schurger SG (2005) Sediment storage and yield in an urbanized karst watershed. Geomorphology 70:85–96

    Google Scholar 

  • Hauns M (2000) Modeling tracer and particle transport under turbulent flow conditions in karst conduit structures. Freib Schr Hydrogeol 12:77

    Google Scholar 

  • Häuselmann P, Granger DE, Jeannin P-Y, Lauritzen S-E (2007) Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology 35:143–146

    Google Scholar 

  • He Q, Yang P, Yuan W, Jiang Y, Pu J, Yuan D, Kuang Y (2010) The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China. Hydrol J 18:1281–1289

    Google Scholar 

  • Helwig J (1964) Stratigraphy of detrital fills of Carroll Cave, Camden County, Missouri. Mo Speleol 6:1–15

    Google Scholar 

  • Hendrickson GE (1961) Sources of water in Styx and Echo Rivers, Mammoth Cave, Kentucky. US Geol Surv Water Supply Pap 424:41–44

    Google Scholar 

  • Herman EK, Tancredi J, Toran L, White WB (2007) Mineralogy of suspended sediment in karst springs in relation to spring water chemistry. Hydrogeol J 15:255–266

    Google Scholar 

  • Herman EK, Toran L, White WB (2008) Threshold events in spring discharge: evidence from sediment and continuous water level measurement. J Hydrol 351:98–106

    Google Scholar 

  • Hill CA, Forti P (1997) Cave minerals of the world, 2nd edn. Natl Speleol Soc, Huntsville, p 463

    Google Scholar 

  • Hyatt JA, Jacobs PM (1996) Distribution and morphology of sinkholes triggered by flooding following Tropical Storm Alberto at Albany, Georgia, USA. Geomorphology 17:305–316

    Google Scholar 

  • James JM (1993) Burial and infilling of a karst in Papua-New-Guinea by road erosion sediments. Environ Geol 21:144–151

    Google Scholar 

  • Jancin M, Ebaugh WF (2002) Shallow lateral DNAPL migration within slightly dipping limestone, southwestern Kentucky. Eng Geol 65:141–149

    Google Scholar 

  • Jeannin P-Y (2001) Modeling flow in phreatic and epiphreatic karst conduits in the Hölloch Cave (Muotatal, Switzerland). Water Resour Res 37:191–200

    Google Scholar 

  • Jones WK (1971) Characteristics of the underground floodplain. Natl Speleol Soc Bull 33:105–114

    Google Scholar 

  • Jones WK, Culver DC, Herman JS (2003) Epikarst. Karst Waters Inst Spec Pub 9:160

    Google Scholar 

  • Kiernan K, Lauritzen S-E, Duhig N (2001) Glaciation and cave sediment aggradation around the margins of the Mt Field Plateau, Tasmania. Aust J Earth Sci 48:251–263

    Google Scholar 

  • Kogovšek J, Sebela S (2004) Water tracing through the vadose zone above Postojnska Jama, Slovenia. Environ Geol 45:992–1001

    Google Scholar 

  • Komar PD (1987a) Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology 34:1165–1176

    Google Scholar 

  • Komar PD (1987b) Selective grain entrainment by a current from a bed of mixed sizes: a reanalysis. J Sed Petrol 57:203–211

    Google Scholar 

  • Komar PD, Li Z-L (1988) Applications of grain-pivoting and sliding analyses to selective entrainment of gravel and to flow-competence evaluations. Sedimentology 35:681–695

    Google Scholar 

  • Korfali SI, Davies BE (2005) Seasonal variations of trace metal chemical forms in bed sediments of a karstic river in Lebanon: implications for self-purification. Environ Geochem Health 27:385–395

    Google Scholar 

  • Koski K, Wilson JL (2009) Is the hyporheic zone a useful concept for karst aquifers with conduits? Geol Soc Amer Abstr Programs 47(7):400

    Google Scholar 

  • Kukla J, Ložek V (1958) K problematice výzkumu jeskynních výplní (Problems of investigation of the cave deposits). Československý Kras 11:19–83

    Google Scholar 

  • Lacroix M, Rodet J, Wang HQ, Massei N, Dupont JP (2000) Origine des matières en suspension dans un système aquifère karstique: apports de la microgranulométrie. CR Acad Sci Paris, Sciences de la Terre et des planètes 330:347–354

    Google Scholar 

  • Lakey B, Krothe NC (1996) Stable isotopic variation of storm discharge from a perennial karst spring, Indiana. Water Resour Res 32:721–731

    Google Scholar 

  • Laroche E, Petit F, Fournier M, Pawlak B (2010) Transport of antibiotic-resistant Escherichia coli in a public rural karst water supply. J Hydrol 392:12–21

    Google Scholar 

  • Lauritzen SE, Abbott J, Arnesen R, Crossley G, Grepperud D, Ive A, Johnson S (1985) Morphology and hydraulics of an active phreatic conduit. Cave Sci 12:139–146

    Google Scholar 

  • Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA, using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143

    Google Scholar 

  • Liedl R, Sauter M, Hückinghaus D, Climens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39. doi:10.1029/2001WR001206

  • Lippmann JL, Criss RE, Osburn GR (2010) Reworked loess and red clays in Missouri caves: a comparative compositional study. Mo Speleol 50:10–20

    Google Scholar 

  • Loop CM, White WB (2001) A conceptual model for DNAPL transport in karst ground water basins. Ground Water 39:119–127

    Google Scholar 

  • Luiszer FD (1994) Speleogenesis of cave of the winds, Manitou springs, Colorado. In: Sasowsky ID, Palmer MV (eds) Breakthroughs in Karst geomicrobiology and redox geochemistry. Karst Waters Institute Spec Pub 1:91–106

  • Lynch FL, Mahler BJ, Hauwert NN (2004) Provenance of suspended sediment discharge from a karst aquifer determined by clay mineralogy. In: Sasowsky ID, Mylroie JE (eds) Studies in cave sediments. Kluwer Academic/Plenum Publishers, New York, pp 83–93

    Google Scholar 

  • Mahler BJ, Lynch FL (1999) Muddy waters: temporal variation in sediment discharging from a karst spring. J Hydrol 214:165–178

    Google Scholar 

  • Mahler BJ, Bennett PC, Zimmerman M (1998) Lanthanide-labeled clay: a new method for tracing sediment transport in karst. Ground Water 36:835–843

    Google Scholar 

  • Mahler BJ, Lynch FL, Bennett PC (1999) Mobile sediment in an urbanizing karst aquifer: implications for contaminant transport. Environ Geol 39:25–38

    Google Scholar 

  • Mahler BJ, Personné JC, Lods GF, Drogue C (2000) Transport of free and particulate-associated bacteria in karst. J Hydrol 238:179–193

    Google Scholar 

  • Mao L, Lenzi MA (2007) Sediment mobility and bedload transport conditions in an alpine stream. Hydrol Process 21:1882–1891

    Google Scholar 

  • Massei N, Lacroix M, Dupont JP, Rodet J, Laignel B (2002) Transport of suspended solids from a karstic to an alluvial aquifer: the role of the karst/alluvium interface. J Hydrol 260:88–101

    Google Scholar 

  • Massei N, Wang HQ, Dupont JP, Rodet J, Laignel B (2003) Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. J Hydrol 275:109–121

    Google Scholar 

  • Massei N, Dupont JP, Mahler BJ, Laignel B, Fournier M, Valdes D, Ogier S (2006) Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J Hydrol 329:244–257

    Google Scholar 

  • Milske JA, Alexander EC Jr, Lively RS (1983) Clastic sediments in Mystery Cave, southeastern Minnesota. Natl Speleol Soc Bull 45:55–75

    Google Scholar 

  • Murray AS, Stanton R, Olley JM, Morton R (1993) Determining the origins and history of sedimentation in an underground river system using natural and fallout radionuclides. J Hydrol 146:341–359

    Google Scholar 

  • Muste M, Yu K, Fujita I, Ettema R (2005) Two-phase versus mixed-flow perspective on suspended sediment transport in turbulent channel flows. Water Resour Res 41:W10402

    Google Scholar 

  • O’Connor JE (1993) Hydrology, hydraulics, and geomorphology of the Bonneville flood. Geol Soc Am Spec Pap 274:83

    Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Kelly WR (2001) Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators. Chem Geol 179:113–128

    Google Scholar 

  • Peng J, Cai Y, Yang M, Liang H, Liang F, Song L (2007) Relating aerial erosion, soil erosion and sub-soil erosion to the evolution of Lunan Stone Forest, China. Earth Surf Process Landf 32:260–268

    Google Scholar 

  • Personné JC, Poty F, Vaute L, Drogue C (1998) Survival, transport and dissemination of Escherichia coli and enterococcci in a fissured environment. Study of a flood in a karstic aquifer. J Appl Microbiol 84:431–438

    Google Scholar 

  • Personné J-C, Poty F, Mahler BJ, Drogue C (2004) Colonization by aerobic bacteria in karst: laboratory and in situ experiments. Ground Water 42:526–533

    Google Scholar 

  • Peterson EW, Wicks CM (2003) Characterization of the physical and hydraulic properties of the sediment in karst aquifers of the Springfield Plateau, central Missouri, USA. Hydrogeol J 11:357–367

    Google Scholar 

  • Pipan T, Culver DC (2005) Estimating biodiversity in the epikarstic zone of a West Virginia cave. J Cave Karst Stud 67:103–109

    Google Scholar 

  • Pipan T, Blejec A, Brancelj A (2006) Multivariate analysis of copepod assemblages in epikarstic waters of some Slovenian caves. Hydrobiologia 559:213–223

    Google Scholar 

  • Plotnick RE, Kenig F, Scott AC, Glasspool IJ, Eble CF, Lang WJ (2009) Pennsylvanian paleokarst and cave fills from northern Illinois, USA: a window into late Carboniferous environments and landscapes. Palaios 24:627–637

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2006) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14:473–484

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2008a) Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environ Sci Tech 41:8400–8405

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2008b) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water. doi:10.1111/j.1745-6584.2008.00509.x

    Google Scholar 

  • Reed TM, McFarland JT, Fryar AE, Fogle AW, Taraba JL (2010) Sediment discharges during stormflow from urban and karst springs, central Kentucky, USA. J Hydrol 383:280–290

    Google Scholar 

  • Renault P (1967–1969) Contribution a l’ etude des actions mécaniques et sédimentologiques dans la spéléogenèse. Annales de Spéléologie, Introduction. 22:5–17; I Les actions mécaniques a l’échelle du massif. 22:209–267; II Les effets mécaniques a l’échelle de la cavité. 23:259–307; III les facteurs sédimentologiques. 23:529–596; Répertoire Géographique. 24:317–337

  • Richard DA, Dorale JA (2003) U-series chronology and environmental applications of speleothems. Rev Mineral Geochem 52:407–460

    Google Scholar 

  • Ryan M, Meiman J (1996) An examination of short-term variations in water quality at a karst spring in Kentucky. Ground Water 34:23–30

    Google Scholar 

  • Sasowsky ID, White WB, Schmidt VA (1995) Determination of stream-incision rate in the Appalachian plateaus by using cave-sediment magnetostratigraphy. Geology 23:415–418

    Google Scholar 

  • Schmid E (1958) Höhlenforschung und Sedimentanalyse. Schriften des Institutes für Ur- und Frühgeschichte der Schweiz 13:186

    Google Scholar 

  • Schmidt VA (1982) Magnetostratigraphy of sediments in Mammoth Cave, Kentucky. Science 217:827–829

    Google Scholar 

  • Shevenell L, McCarthy JF (2002) Effects of precipitation events on colloids in a karst aquifer. J Hydrol 255:50–68

    Google Scholar 

  • Slingerland R, Harbaugh JW, Furlong K (1994) Simulating clastic sedimentary basins. Prentice Hall, Englewood Cliffs, p 220

    Google Scholar 

  • Smart CC (1988) Quantitative tracing of the Maligne Karst System, Alberta, Canada. J Hydrol 98:185–204

    Google Scholar 

  • Sowers GF (1996) Building on sinkholes. ASCE Press, American Society of Civil Engineers, New York

    Google Scholar 

  • Springer GS (2004) A pipe-based, first approach to modeling closed conduit flow in caves. J Hydrol 289:178–189

    Google Scholar 

  • Springer GS, Kite JS (1997) River-derived slackwater sediments in caves along Cheat River, West Virginia. Geomorphology 18:91–100

    Google Scholar 

  • Springer GS, Kite JS, Schmidt VA (1997) Cave sedimentation, genesis, and erosional history of the Cheat River Canyon, West Virginia. Geol Soc Am Bull 109:524–532

    Google Scholar 

  • Sroubek P, Diehl JF, Kadlec J, Valoch K (2001) A Late Pleistocene palaeoclimate record based on mineral magnetic properties of the entrance facies sediments of Kulna Cave, Czech Republic. Geophys J Int 147:247–262

    Google Scholar 

  • Sroubek P, Diehl JF, Kadlec J (2007) Historical climatic record from flood sediments deposited in the interior of Spirálka Cave, Czech Republic. Palaeogeogr Palaeoclimatol Palaeoecol 251:547–562

    Google Scholar 

  • Stock GM, Granger DE, Sasowsky ID, Anderson RS, Finkel RC (2005) Comparison of U-Th, paleomagnetism, and cosmogenic burial methods for dating caves: implications for landscape evolution studies. Earth Planet Sci Lett 236:388–403

    Google Scholar 

  • Tinkler KJ, Wohl E (1998) Rivers over rock: fluvial processes in Bedrock channels. Am Geophys Union Geophys Monogr Ser 107:323

    Google Scholar 

  • Toran L, Tancredi J, Herman EK, White WB (2006) Conductivity and sediment variation during storms as evidence for pathways in karst springs. Geol Soc Am Spec Pap 404:169–176

    Google Scholar 

  • Toran L, Gross K, Yang Y (2009) Effects of restricted recharge in an urban karst system. Environ Geol 58:131–139

    Google Scholar 

  • Trajkovic B, Ivetic M, Calomino F, D’Ippolito A (1999) Investigation of transition from free surface to pressurized flow in a circular pipe. Water Sci Tech 39(9):105–112

    Google Scholar 

  • TVA (1949) Geology and foundation treatment. United States Tennessee Valley Authority Tech Rpt No. 22

  • Van Gundy JJ, White WB (2009) Sediment flushing in Mystic Cave, West Virginia, USA, in response to the 1985 Potomac Valley flood. Int J Speleol 38:103–109

    Google Scholar 

  • Van Niekerk A, Vogel KR, Slingerland RL, Bridge JS (1992) Routing of heterogeneous sediments over movable bed: model development. J Hydraul Eng 118:246–262

    Google Scholar 

  • Vanoni VA (1975) Sedimentation engineering. American Society of Civil Engineers, New York, p 745

    Google Scholar 

  • Vesper DJ, White WB (2003) Metal transport to karst springs during storm flow: an example from Fort Campbell, Kentucky/Tennessee, USA. J Hydrol 276:20–36

    Google Scholar 

  • Vesper DJ, White WB (2004) Spring and conduit sediments as storage reservoirs for heavy metals in karst aquifers. Environ Geol 45:481–493

    Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer/Praxis Publishing, Chichester, p 378

    Google Scholar 

  • Wang G, Fu X, Huang Y, Huang G (2008) Analysis of suspended sediment transport in open-channel flows: kinetic-model-based simulation. J Hydraul Eng 134:328–339

    Google Scholar 

  • White WB (1976) The caves of western Pennsylvania. Pa Geol Surv Gen Geol Rpt 67:97

    Google Scholar 

  • White WB (1999) Conceptual models for karstic aquifers. Karst Waters Inst Spec Pub 5:11–16

    Google Scholar 

  • White WB, White EL (1968) Dynamics of sediment transport in limestone caves. Natl Speleol Soc Bull 30:115–129

    Google Scholar 

  • White WB, White EL (1995) Threshold for soil transport and long term stability of sinkholes. In: Beck BF, Pearson FM (eds) Karst geohazards. A.A. Balkema, Rotterdam, pp 73–78

    Google Scholar 

  • White WB, White EL (1997) Storm pulses, thresholds, and fluid mechanics in the transport of clastic sediments in limestone aquifers. Proceedings of the 12th International Congress Speleol, La Chaux de Fonds, Switzerland, Vol II, pp 191–194

  • White WB, Vito C, Scheetz BE (2009) The mineralogy and trace element chemistry of black manganese oxide deposits from caves. J Cave Karst Stud 71:136–143

    Google Scholar 

  • Wicks CM, Aley T, Ashley D Noltie D (2011) Combining data to assess the habitat suitability of patches of streambed. Amer Geophys Union Fall Meeting, December 5–9, San Francisco, CA, Abstract H211-02

  • Wolfe TE (1973) Sedimentation in karst drainage basins along the Allegheny Escarpment in southeastern West Virginia, USA. PhD. thesis, McMaster University

  • Woodward JC, Goldberg P (2001) The sedimentary records in Mediterranean rockshelters and caves: archives of environmental change. Geoarchaeology 16(4):327–354

    Google Scholar 

  • Worthington SRH (1991). Karst hydrogeology in the Canadian Rocky Mountains. Ph.D. thesis, McMaster University, Hamilton

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47:326–336

    Google Scholar 

  • Worthington SRH, Ford DC, Davies GJ (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifers. In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. AA Balkema, Rotterdam, pp 113–128

    Google Scholar 

  • Yuan D (2002) Rock desertification in the subtropical karst of South China. In: Yuan D, Zhang C (eds) Karst processes and the carbon cycle. Geological Publishing House, Beijing, pp 191–199

    Google Scholar 

  • Zupan Hajna N, Michev A Pruner P, Bosák P (2008) Palaeomagnetism and magnetostratigraphy of karst sediments in Slovenia. Carsologica 8, Postojna, Slovenia

Download references

Acknowledgments

Funding for this project was provided by the National Science Foundation Hydrologic Sciences Program under Award Nos. 125601 and 125551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, E.K., Toran, L. & White, W.B. Clastic sediment transport and storage in fluviokarst aquifers: an essential component of karst hydrogeology. Carbonates Evaporites 27, 211–241 (2012). https://doi.org/10.1007/s13146-012-0112-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-012-0112-7

Keywords

Navigation