Skip to main content
Log in

Evaluation of a CMIP6 Multi-GCM Ensemble for Atmospheric Rivers and Precipitation Over East Asia

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Atmospheric rivers (ARs) are closely related to water resources and hydrological extremes in East Asia (EA) that has been historically susceptible to extreme hydrological events. Thus, projecting the climate change impact on ARs in EA has become an important research topic. This study evaluates a CMIP6 multi-model ensemble (MME) for the climatology of ARs, AR-related variables and precipitation over EA in the present-day climate by comparing the MME against those from the ECMWF Reanalysis version 5 (ERA5). The MME represents well the seasonal-regional variations of AR frequency as well as the integrated water–vapor transport, precipitable water and precipitation. The most notable biases are the underestimation of these variables over the western North Pacific where ARs are most active. The MME biases vary regionally with the largest (smallest) biases in southern China (Korea-western Japan); the biases in the highly populated and industrialized mid-latitude EA coastal regions, the main region of interest in the climate change study to follow, are below 10% of the ERA5-derived values. The MME represents the seasonal-meridional evolution of ARs and precipitation related to the EA summer monsoon rainfall over the longitudes of the Korean peninsula (124.5E-130.5E), at least qualitatively, despite underestimation of these for June–August over the latitudes of 30 N-40 N, i.e., much of the early summer monsoon season in Korea. Overall, these results suggest that the CMIP6 MME possesses skill acceptable for projecting the climate change impacts on ARs and precipitation over the population and industrial centers in EA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgements

This work was funded by the Korea Meteorological Administration Research and Development Program "Developing and Assessing Climate Change Scenarios" under Grant (KMA2018-00321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Uk Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Jee-Hoon Jeong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, TJ., Kim, J., Park, C. et al. Evaluation of a CMIP6 Multi-GCM Ensemble for Atmospheric Rivers and Precipitation Over East Asia. Asia-Pac J Atmos Sci 59, 327–345 (2023). https://doi.org/10.1007/s13143-022-00311-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-022-00311-3

Keywords

Navigation