Skip to main content
Log in

Composite Analysis of the Beta-gyre and Rossby Wave Induced by Tropical Cyclones

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Beta gyre and Rossby wave train induced by tropical cyclones were identified from the ERA5 global-reanalysis data of the recent 30 years using a composite method. To pick up the disturbances relevant to the beta gyre and Rossby wave train surrounding tropical cyclones, the disturbances were decomposed into three distinct horizontal scales including small, intermediate, and planetary-scale. Composite map of the disturbances containing small- and intermediate-scale showed a well-organized Rossby wave train. The orientation of wave train was found to depend on the translation direction of tropical cyclones, and also appeared to split into two orientations except for those translating in the west-northwestward direction. The wave energy of the wave train was shown to propagate along the wave train axis, which was inferred from the amplitude change with time within the wave train. The wave train shows a weak upward-westward tilt and increasing amplitude with height, implying the wave energy propagating upward. A dipole circulation cell, bearing a close resemblance to the beta gyre depicted in the theories and numerical models, was found from the Rossby wave train. The strength and orientation of the beta gyres were revealed to vary with the translation direction of the tropical cyclones, with the weakest and strongest amplitudes being found for the westward- and northward-translation cases, respectively. It was shown that the orientation of the beta gyre obtained by a lag-composite method rotates clockwise with time regardless of the translation direction of tropical cyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adem, J.: A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus 8, 363–372 (1956)

    Article  Google Scholar 

  • Carr, L.E., III., Elsberry, R.L.: Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. J. Atmos. Sci. 47, 542–546 (1990)

    Article  Google Scholar 

  • Chan, J.C.L.: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 37, 99–128 (2005)

    Article  Google Scholar 

  • Chan, J.C.L., Williams, R.T.: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci. 44, 1257–1265 (1987)

    Article  Google Scholar 

  • Chavas, D.R., Reed, K., Knaff, J.: Physical understanding of the tropical cyclone wind-pressure relationship. Nat. Commun. 8, 1360 (2017)

    Article  Google Scholar 

  • Cheong, H.-B., Kong, H.-J., Kang, H.-G., Lee, J.-D.: Fourier finite-element method with linear basis functions on a sphere: Application to elliptic and transport equations. Mon. Wea. Rev. 143, 1275–1294 (2015)

    Article  Google Scholar 

  • Elsberry, R.L.: International experiments to study tropical cyclones in the western North Pacific. Bull. Amer. Meteor. Soc. 71, 1305–1316 (1990)

    Article  Google Scholar 

  • Emanuel, K.: 100 years of progress in tropical cyclone research. Meteorol. Monogr. 59, 15.1-15.68 (2018)

    Article  Google Scholar 

  • Evans, J.L., Holland, G.J., Elsberry, R.L.: Interactions between a barotropic vortex and an idealized subtropical ridge. Part I: Vortex motion. J. Atmos. Sci. 48, 301–314 (1991)

    Article  Google Scholar 

  • Fang, J., Zhang, F.: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev. 140, 3327–3346 (2012)

    Article  Google Scholar 

  • Fiorino, M., Elsberry, R.L.: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci. 46, 975–990 (1989)

    Article  Google Scholar 

  • Franklin, J.L., Feuer, S.E., Kaplan, J., Aberson, S.D.: Tropical cyclone motion and surrounding flow relationships: Searching for beta gyres in omega dropwindsonde datasets. Mon. Wea. Rev. 124, 64–84 (1996)

    Article  Google Scholar 

  • Ge, X., Li, T., Wang, Y., Peng, M.: Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper-tropospheric influence. J. Atmos. Sci. 65, 2272–2289 (2008)

    Article  Google Scholar 

  • Holland, G.J.: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci. 40, 328–342 (1983)

    Article  Google Scholar 

  • Holland, G.J., Leslie, L.M., Diehl, B.C.: Comments on “The detection of flow asymmetries in the tropical cyclone environment.” Mon. Wea. Rev. 120, 2394–2397 (1992)

    Article  Google Scholar 

  • Hoskins, B.J., Simmons, A.J., Andrews, D.G.: Energy dispersion in a barotropic atmosphere. Q. J. R. Meteor. Soc. 103, 553–567 (1977)

    Article  Google Scholar 

  • Kim, S.-H., Kwon, H.-J., Elsberry, R.L.: Beta gyres in global analysis fields. Adv. Atmos. Sci. 26, 984–994 (2009)

    Article  Google Scholar 

  • Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J., Neumann, C.J.: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc. 91, 363–376 (2010)

    Article  Google Scholar 

  • Kossin, J.P.: A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018)

    Article  Google Scholar 

  • Krouse, K.D., Sobel, A.H., Polvani, L.M.: On the wavelength of the Rossby waves radiated by tropical cyclones. J. Atmos. Sci. 65, 644–654 (2008)

    Article  Google Scholar 

  • Kwon, I.-H., Cheong, H.-B.: Tropical cyclone initialization with a spherical high-order filter and idealized three-dimensional bogus vortex. Mon. Wea. Rev. 138, 1344–1367 (2010)

    Article  Google Scholar 

  • Li, X., Wang, B.: Barotropic dynamics of the beta gyres and beta drift. J. Atmos. Sci. 51, 746–756 (1994)

    Article  Google Scholar 

  • Montgomery, M.T., Möller, J.D., Nicklas, C.T.: Linear and nonlinear vortex motion in an asymmetric balance shallow water model. J. Atmos. Sci. 56, 749–768 (1999)

    Article  Google Scholar 

  • Nam, Y.-J., Cheong, H.-B.: Rossby waves and beta-gyre associated with tropical cyclone-scale barotropic vortex on the sphere. J. Korean Earth Sci. Soc. 41, 344–355 (2020)

    Article  Google Scholar 

  • Ramsay, H.: The global climatology of tropical cyclones. Oxford Research Encyclopedia of Natural Hazard Science, 36pp. https://doi.org/10.1093/acrefore/9780199389407.013.79 (2017)

  • Reale, O., Achuthavarier, D., Fuentes, M., Putman, W.M., Partyka, G.: Tropical cyclones in the 7-km NASA global nature run for use in observing system simulation experiments. J. Atmos. Ocean. Technol. 34, 73–100 (2017)

    Article  Google Scholar 

  • Reeder, M.J., Smith, R.K., Lord, S.J.: The detection of flow asymmetries in the tropical cyclone environment. Mon. Wea. Rev. 119, 848–855 (1991)

    Article  Google Scholar 

  • Shapiro, L.J., Ooyama, K.V.: Barotropic vortex evolution on a beta plane. J. Atmos. Sci. 47, 170–187 (1990)

    Article  Google Scholar 

  • Shi, W., Fei, J., Huang, X., Liu, Y., Ma, Z., Yang, L.: Rossby wave energy dispersion from tropical cyclone in zonal basic flows. J. Geophys. Res. Atmos. 121, 3120–3138 (2016)

    Article  Google Scholar 

  • Skamarock, W.C., Klemp, J.B.: A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008)

    Article  Google Scholar 

  • Smith, R.B.: A hurricane beta-drift law. J. Atmos. Sci. 50, 3213–3215 (1993)

    Article  Google Scholar 

  • Smith, R.K., Ulrich, W.: Vortex motion in relation to the absolute vorticity gradient of the vortex environment. Q. J. R. Meteorol. Soc. 119, 207–215 (1993)

    Google Scholar 

  • Tian, Y., Luo, Z.: Vertical structure of beta gyres and its effect on tropical cyclone motion. Adv. Atmos. Sci. 11, 43–50 (1994)

    Article  Google Scholar 

  • Wang, Y., Holland, G.J.: The beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci. 53, 411–427 (1996)

    Article  Google Scholar 

  • Wang, B., Li, X., Wu, L.: Direction of hurricane beta drift in horizontally sheared flows. J. Atmos. Sci. 54, 1462–1471 (1997)

    Article  Google Scholar 

  • Wang, B., Elsberry, R.L., Wang, Y., Wu, L.: Dynamics in tropical cyclone motion: A review. Chin. J. Atmos. Sci. 22, 416–434 (1998)

    Google Scholar 

  • William, D., Julian, C., Fabrice, C., Stella, B., Sebastien, F.: How realistic are tropical cyclones in the ERA5 reanalysis? EGU general assembly, EGU22–5755 (2022)

  • Willoughby, H.E., Jones, R.W.: Nonlinear motion of a barotropic vortex in still air and in an environmental zonal flow. J. Atmos. Sci. 58, 1907–1923 (2001)

    Article  Google Scholar 

  • Wirth, V., Riemer, M., Chang, E.K.M.: Rossby wave packets on the midlatitude waveguide-A review. Mon. Wea. Rev. 146, 1965–2001 (2018)

    Article  Google Scholar 

  • Wu, L., Chen, X.: Revisiting the steering principal of tropical cyclone motion in a numerical experiment. Atmos. Chem. Phys. 16, 14925–14936 (2016)

    Article  Google Scholar 

  • Wu, L., Wang, B.: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev. 128, 1899–1911 (2000)

    Article  Google Scholar 

  • Wu, L., Ni, Z., Duan, J., Zong, H.: Sudden tropical cyclone track changes over the western North Pacific: A composite study. Mon. Wea. Rev. 141, 2597–2610 (2013)

    Article  Google Scholar 

  • Yasunaga, K., Miyajima, T., Yamaguchi, M.: Relationships between tropical cyclone motion and surrounding flow with reference to longest radius and maximum sustained wind. Sci. Online Lett. Atmos. 12, 277–281 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their useful comments that helped improve the manuscript.

Funding

This research project was supported by research grant of Pukyong National University (year 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong-Bin Cheong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Seok-Woo Son

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, HB., Nam, YJ. & Lee, CH. Composite Analysis of the Beta-gyre and Rossby Wave Induced by Tropical Cyclones. Asia-Pac J Atmos Sci 59, 167–183 (2023). https://doi.org/10.1007/s13143-022-00301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-022-00301-5

Keywords

Navigation