Abstract
The major characteristics of ice microphysics in Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) bulk-type cloud microphysics originate from the diagnosed ice number concentration, which is a function of the cloud-ice mixing ratio. In this study, we correct numerical errors in ice microphysics processes of the WDM6, in which the cloud-ice shape is assumed as single bullets and examine the impact on regional climate simulations. By rederiving the relationships between cloud microphysics characteristics, including the one linking the cloud-ice mixing ratio and number concentration, we remove numerical errors intrinsic to the description of cloud-ice characteristics in the original WDM6 microphysics scheme. The revised WDM6 is tested using a WRF framework for regional climate simulations over the East Asian region. We find that our correction to the WDM6 improves the model’s performance in capturing the observed distribution of the monsoon rain band. A reduction in cloud ice is significant in the revised WDM6, which strengthens the Western North Pacific High. By conducting the additional sensitivity experiment in which the characteristics of cloud-ice shape are revised as the one for the column type, our study also finds out that the impacts of the existing numerical errors on the simulated monsoon is as large as the ones of the changes in cloud-ice shape.












Similar content being viewed by others
Code Availability
The codes for ORG, NEW, and SEN experiments are available via https://doi.org/10.5281/zenodo.6655498. The supplement that denotes the induction of parameters defining the cloud-ice characteristics, shown in Tables 1 and 2, is also uploaded.
References
Bae, S.Y., Hong, S.Y., Tao, W.K.: Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia Pac. J. Atmos. Sci. 55(2), 233–245 (2019). https://doi.org/10.1007/s13143-018-0066-3
Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis to find floating-point accuracy problems. Proc. ACM SIGPLAN Conf. on Programming Language Design and Implementation, vol. 47(6), pp. 453–462. ACM, New York, NY (2012). https://doi.org/10.1145/2254064.2254118
Byun, U.-Y., Hong, S.-Y., Shin, H.-Y., Lee, J.-W., Song, J.-I., Hahm, S.-J., Kim, J.-K., Kim, H.-W., Kim, J.-S.: WRF-based short-range forecast system of the Korea Air Force: Verification of prediction skill in 2009 summer. Atmos. 21, 197–208 (2011). https://doi.org/10.14191/Atmos.2011.21.2.197
Chen, F., Dudhia, J.: Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev. 129, 569–585 (2001). https://doi.org/10.1175/1520-0493(2001)129%3c0569:CAALSH%3e2.0.CO;2
Cohard, J.-M., Pinty, J.-P.: Acomprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc. 126, 1815–1842 (2000). https://doi.org/10.1002/qj.49712656613
Comin, A.N., Schumacher, V., Justino, F., Fernández, A.: Impact of different microphysical parameterizations on extreme snowfall events in the Southern Andes. Wea. Clim. Extremes 21, 65–75 (2018). https://doi.org/10.1016/j.wace.2018.07.001
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.N.: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 146(730), 1999–2049 (2020). https://doi.org/10.1002/qj.3803
Heymsfield, A.J.: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci. 34(2), 367–381 (1977). https://doi.org/10.1175/1520-0469(1977)034%3c0367:PDISIC%3e2.0.CO;2
Heymsfield, A.J., Donner, L.J.: A scheme for parameterizing ice cloud water content in general circulation models. J. Atmos. Sci. 47(15), 1865–1877 (1990). https://doi.org/10.1175/1520-0469(1990)047%3c1865:ASFPIC%3e2.0.CO;2
Heymsfield, A.J., Iaquinta, J.: Cirrus crystal terminal velocities. J. Atmos. Sci. 57(7), 916–938 (2000). https://doi.org/10.1175/1520-0469(2000)057%3c0916:CCTV%3e2.0.CO;2
Hong, S.-Y., Lee, J.-W.: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res. 93, 818–831 (2009). https://doi.org/10.1016/j.atmosres.2009.03.015
Hong, S.-Y., Lim, J.-O.J.: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. 42(2), 129–151 (2006)
Hong, S.-Y., Dudhia, J., Chen, S.-H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev. 132, 103–120 (2004). https://doi.org/10.1175/1520-0493(2004)132%3c0103:ARATIM%3e2.0.CO;2
Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 134, 2318–2341 (2006). https://doi.org/10.1175/MWR3199.1
Hong, S.-Y., Lim, K.-S.S., Lee, Y.-H., Ha, J.-C., Kim, H.-W., Ham, S.-J.: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor. 2010, 707253 (2010). https://doi.org/10.1155/2010/707253
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021). https://doi.org/10.1175/JCLI-D-20-0166.1(V2.1)
Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., Xie, P.: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 06, 38pp. (2019). https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf
Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, W.D.: Radiative forcing by long-lived greenhouse gases calculations with the AER radiative transfer models. J. Geophys. Res. 113, D13103 (2008). https://doi.org/10.1029/2008JD009944
Jiménez, P.A., Dudhia, J., González-Rouco, J.F., Navarro, J., Montávez, J.P., García-Bustamante, E.: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev. 140(3), 898–918 (2012). https://doi.org/10.1175/MWR-D-11-00056.1
Kain, J.S.: The Kain-Fritsch convective parameterization. An Update. J. Appl. Meteor. 43, 170–181 (2004). https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2
Kain, J.S., Fritsch, J.M.: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47(23), 2784–2802 (1990). https://doi.org/10.1175/1520-0469(1990)047%3c2784:AODEPM%3e2.0.CO;2
Karki, R., Hasson, S.U., Gerlitz, L., Talchabhadel, R., Schenk, E., Schickhoff, U., Scholten, T., Böhner, J.: WRF-based simulation of an extreme precipitation event over the Central Himalayas: atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmos. Res. 214, 21–35 (2018). https://doi.org/10.1016/j.atmosres.2018.07.016
Li, Y., Szeto, K., Stewart, R.E., Thériault, J.M., Chen, L., Kochtubajda, B., Liu, A., Boodoo, S., Goodson, R., Mooney, C., Kurkute, S.: A numerical study of the June 2013 flood-producing extreme rainstorm over southern Alberta. J. Hydrometeor. 18(8), 2057–2078 (2017). https://doi.org/10.1175/JHM-D-15-0176.1
Lim, K.-S.S., Hong, S.-Y.: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev. 138, 1587–1612 (2010). https://doi.org/10.1175/2009MWR2968.1
Lim, K.-S.S., Chang, E.-C., Sun, R., Kim, K., Tapiador, F.J., Lee, G.: Evaluation of simulated winter precipitation using WRF-ARW during the ICE-POP 2018 field campaign. Wea. Forecast. 35(5), 2199–2213 (2020). https://doi.org/10.1175/WAF-D-19-0236.1
Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., Dudhia, J.: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev. 139(11), 3533–3553 (2011). https://doi.org/10.1175/MWR-D-11-00009.1
McMillen, J.D., Steenburgh, W.J.: Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake–effect snowstorm. Wea. Forecast. 30(1), 136–152 (2015). https://doi.org/10.1175/WAF-D-14-00060.1
Min, K.H., Choo, S., Lee, D., Lee, G.: Evaluation of WRF cloud microphysics schemes using radar observations. Wea. Forecasting 30(6), 1571–1589 (2015). https://doi.org/10.1175/WAF-D-14-00095.1
Morcrette, J.J., Barker, H.W., Cole, J.N.S., Iacono, M.J., Pincus, R.: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev. 136, 4773–4798 (2008). https://doi.org/10.1175/2008MWR2363.1
Morrison, H., Milbrandt, J.A., Bryan, G.H., Ikeda, K., Tessendorf, S.A., Thompson, G.: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci. 72(1), 312–339 (2015). https://doi.org/10.1175/JAS-D-14-0066.1
Park, H.-H., Lee, J., Chang, E.-C., Joh, M.: High-Resolution Simulation of Snowfall over the Korean Eastern Coastal Region using WRF model: Sensitivity to Domain Nesting-down Strategy. Asia Pac. J. Atmos. Sci. 55, 493–506 (2019). https://doi.org/10.1007/s13143-019-00108-x
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., Huang, X. Y., Wang, W., Powers, J. G.: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. (2008). https://doi.org/10.5065/D68S4MVH
Stoelinga, M.T., Hobbs, P.V., Mass, C.F., Locatelli, J.D., Colle, B.A., Houze, R.A., Jr., Rangno, A.L., Bond, N.A., Smull, B.F., Rasmussen, R.M., Thompson, G., Colman, B.R.: Improvement of Microphysical Parameterizations through Observational Verification Experiments. Bull. Am. Meteor. Soc. 84, 1807–1826 (2003). https://doi.org/10.1175/BAMS-84-12-1807
Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106(D7), 7183–7192 (2001). https://doi.org/10.1029/2000JD900719
Teixeira, J., Reynolds, C.A.: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev. 136(2), 483–496 (2008). https://doi.org/10.1175/2007MWR1870.1
Teixeira, J., Reynolds, C.A., Judd, K.: Time-step sensitivity of nonlinear atmospheric models: Numerical convergence, truncation error growth, and ensemble design. J. Atmos. Sci. 64, 175–189 (2007). https://doi.org/10.1175/JAS3824.1
Viterbo, F., von Hardenberg, J., Provenzale, A., Molini, L., Parodi, A., Sy, O.O., Tanelli, S.: High-resolution simulations of the 2010 Pakistan flood event: Sensitivity to parameterizations and initialization time. J. Hydrometeor. 17(4), 1147–1167 (2016). https://doi.org/10.1175/JHM-D-15-0098.1
Wielicki, B.A., Barkstrom, B.R., Harrison, E.F., Lee, R.B., III., Smith, G.L., Cooper, J.E.: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc. 77, 853–868 (1996). https://doi.org/10.1175/1520-0477(1996)077%3c0853:CATERE%3e2.0.CO;2
Acknowledgements
This work was funded by the Office of Science user facility and the National Research Foundation of Korea (NRF) grant funded by the South Korean government (MSIT) (2019R1C1C1008482). Work of LLNL-affiliated author (Jiwoo Lee) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the effort was supported by the Regional and Global Model Analysis (RGMA) program of the United States Department of Energy's Office of Science.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Daehyun Kim
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A. Equations of Cloud Microphysics Processes Affected by Numerical Errors
The microphysics processes of hydrometeor (a) mixing ratio and (b) number concentration, affected by the numerical errors present in Hong et al. (2004), are shown in the following.
-
a
Production Terms for Mixing Ratio of Cloud Ice
$$\begin{array}{l}\mathrm{Pgaci}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]={\frac\pi4E_{GI}q_IN}_{0G}\left|{\overline {V_G}}-\overline{V_I}\right|\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\times\left[\frac{\Gamma(3+\mu_G)}{\lambda_G^{3+\mu_G}}+2D_I\times\frac{\Gamma(2+\mu_G)}{\lambda_G^{2+\mu_G}}+D_I^2\times\frac{\Gamma(1+\mu_G)}{\lambda_G^{1+\mu_G}}\right]\end{array}$$$$\mathrm{Piacr}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]=\frac\pi{4\rho_a}a_Rc_RE_{RI}N_IN_{0R}\left(\frac{\rho_0}{\rho_a}\right)^\frac12\left[\frac{\Gamma(b_R+d_R+\mu_R+3)}{\left(f_R+\lambda_R\right)^{b_R+d_R+\mu_R+3}}\right]$$$$\mathrm{Pidep}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]=\frac{4D_I\left(S_I-1\right)N_I}{A_I+B_I}$$$$\mathrm{Pigen}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]=\min\left[\frac{\left(q_{I0}-q_I\right)}{\Delta t},\frac{\left(q-q_{SI}\right)}{\Delta t}\right]$$$$\begin{array}{l}\mathrm{Praci}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]={\frac\pi4E_{RI}q_IN}_{0R}\left|{\overline {V_R}}-\overline{V_I}\right|\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\times\left[\frac{\Gamma\left(3+\mu_R\right)}{\lambda_R^{3+\mu_R}}+2D_I\times\frac{\Gamma\left(2+\mu_R\right)}{\lambda_R^{2+\mu_R}}+D_I^2\times\frac{\Gamma\left(1+\mu_R\right)}{\lambda_R^{1+\mu_R}}\right]\end{array}$$$$\begin{array}{l}\mathrm{Psaci}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]={\frac\pi4E_{SI}q_IN}_{0S}\left|\overline{V_S}-\overline{V_I}\right|\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\times\left[\frac{\Gamma(3+\mu_S)}{\lambda_S^{3+\mu_S}}+2D_I\times\frac{\Gamma(2+\mu_S)}{\lambda_S^{2+\mu_S}}+D_I^2\times\frac{\Gamma(1+\mu_S)}{\lambda_S^{1+\mu_S}}\right]\end{array}$$$$\mathrm{Psaut}\left[\mathrm{kg}\;\mathrm{kg}^{-1}\mathrm s^{-1}\right]=a_1\frac{\left(q_I-q_{Icrit}\right)}{\Delta t}$$By removing the numerical errors of the ice microphysics processes in Hong et al. (2004), Psaut can be enhanced with the decreased \({q}_{Icrit}\) (Table 2) if other meteorological conditions except cloud ice are unchanged. Moreover, Pidep can be enhanced with the increased \({D}_{I}\) and \({N}_{I}\) under the saturated environment over cloud ice (Fig. 1a and c). Pigen and Piacr can be decreased towing to the decreased \({q}_{I0}\) and increased \({N}_{I}\), respectively (Fig. 1a and b). Praci, Psaci, and Pgaci can either decrease or increase because these processes are affected by both \({V}_{I}\) and \({D}_{I}\).
-
b
Production terms for number concentration of cloud ice
Niacr \(\left[{\mathrm{m}}^{-3} {\mathrm{s}}^{-1}\right]=\frac{\pi }{4}{a}_{R}{E}_{RI}{N}_{0R}{N}_{I}{\left(\frac{{\rho }_{0}}{{\rho }_{a}}\right)}^\frac{1}{2}\left[\frac{\Gamma (3+{b}_{R}+{\mu }_{R})}{{({\lambda }_{R}+{f}_{R})}^{3+{b}_{R}+{\mu }_{R}}}\right]\)
Nimlt \(\left[{\mathrm{m}}^{-3} {\mathrm{s}}^{-1}\right]=\frac{{N}_{I}}{{q}_{I}}\)
Niacr and Nimlt can be enhanced with the increased \({N}_{I}\) (Fig. 1a).
Appendix B
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kim, KB., Lim, KS.S. & Lee, J. Numerical Errors in Ice Microphysics Parameterizations and their Effects on Simulated Regional Climate. Asia-Pac J Atmos Sci 58, 679–695 (2022). https://doi.org/10.1007/s13143-022-00288-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13143-022-00288-z


