Abstract
Accurate estimation of black carbon (BC) from the widely used optical attenuation technique is important for the reliable assessment of their climatic impact. The optical instruments use Mass Absorption Cross-section (MAC) for converting light attenuation records to BC mass concentrations and Aethalometer is a widely used optical instrument for BC estimation. Several studies have shown large variability in MAC values. It is thus necessary to examine the accuracy and consistency of MAC values obtained using Aethalometer over distinct geographic locations and seasons. In the present study, MAC values are derived using simultaneous observations (2014–2017) from an EC-OC analyzer and an Aethalometer (AE-42) over a high altitude central Himalayan site at Nainital (29.4oN, 79.5oE, 1958 a.m.s.l). The observations reveal that the annual mean value of MAC (5.03 ± 0.03 m2g− 1 at 880nm) is significantly lower than the constant value used by the manufacturer (16.6 m2g− 1 at 880nm). The estimated MAC values also showed significant seasonal variation, spanning over a range from 3.7 to 6.6 m2g− 1. It is found that the seasonal variability of elemental carbon (EC), air mass variation and meteorological parameters play an important role in the changes in MAC values over this region. Multi-wavelength determination of MAC shows the contribution of absorption by species other than EC at shorter wavelengths. MAC does not show a clear diurnal variation, unlike EC and absorption coefficient. The slope of EC vs. corrected equivalent black carbon (eBC) showed a significant improvement during all seasons when compared with uncorrected eBC. This lends credibility to the fact that the use of site-specific MAC leads to more reliable estimates of eBC over the central Himalayan region. It is found that, instead of using the site specific MAC value, had we used the one supplied by the instrument, we would have underestimated the radiative forcing by about 7.8Wm− 2 which amounts to a reduction by 24 %.
This is a preview of subscription content, access via your institution.











References
Arnott, W.P., Hamasha, K., Moosmüller, H., Sheridan, P.J., Ogren, J.A.: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39, 17–29 (2005)
Bhardwaj, P., Manish Naja, R., Kumar, Chandola, H.C.: Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environ. Sci. Pollut. Res. 23(5), 4397–4410 (2016)
Bhardwaj, P., Naja, M., Lupascu, A., Rupakheti, M., Mues, A., Panday, A.K., Kumar, R.: Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: role of local and regional sources. Atmos. Chem. Phys. 18(16), 11949-11971 (2018)
Birch, M.E., Cary, R.A.: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25(3), 221–241 (1996)
Bodhaine, B.A.: Aerosol absorption measurements at Barrow, Mauna Loa and the south pole. J. Geophys. Res.-Atmos. 100(D5), 8967–8975 (1995)
Bond, T.C., Anderson, T.L., Campbell, D.: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30, 582–600 (1999)
Bond, T.C., Bergstrom, R.W.: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40(1), 27–67 (2006)
Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G.: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.-Atmos. 118, 5380–5552 (2013)
Cao, J., Zhu, C., Ho, K., Han, Y., Shen, Z., Zhan, C., Zhang, J.: Light attenuation cross-section of black carbon in an urban atmosphere in northern China. Particuology 18, 89–95 (2015)
Cho, C., Kim, S.-W., Lee, M., Lim, S., Fang, W., ÖrjanGustafsson, A., Andersson, R.J., Park, Patrick, J., Sheridan: Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ. 212, 65–74 (2019)
Deng, J., Du, K., Wang, K., Yuan, C.S., Zhao, J.: Long-term atmospheric visibility trend in Southeast China, 1973–2010. Atmos. Environ. 59, 11–21 (2012)
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A.S.H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A. and Hansen, A.D.A.: The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 8(5), 1965-1979 (2015).
Dumka, U.C., Sagar, R., Pant, P.: Retrieval of columnar aerosol size distributions from spectral attenuation measurements over Central Himalayas, AAQR. 9, 344–351 (2009)
Dumka, U.C., Krishna Moorthy, K., Kumar, R., Hegde, P., Sagar, R., Pant, P., Singh, N., Suresh, Babu, S.: Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos. Res. 96(4), 510–521 (2010)
Joshi, H.: Study of aerosols characteristics over Central Himalayas, Ph. D. thesis, Kumaun University, Nainital, India. (2015)
Joshi, H., Naja, M., Singh, K.P., Kumar, R., Bhardwaj, P., Suresh Babu, S., Satheesh, S.K., Moorthy, K.K., Chandola, H.C.: Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region. Atmos. Environ. 125, 346–359 (2016)
Joshi, H., Naja, M., David, L.M., Gupta, T., Gogoi, M.M. and Babu, S.S.: Absorption characteristics of aerosols over the central Himalayas and its adjacent foothills. Atmos. Res. 233, 104718 (2020).
Gogoi, M.M., Babu, S.S., Moorthy, K.K., Bhuyan, P.K., Pathak, B., Subba, T., Chutia, L., Kundu, S.S., Bharali, C., Borgohain, A., Guha, A.: Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations. J. Geophys. Res.-Atmos. 122(2), 1132–1157 (2017)
Goldberg, E.D.: Black carbon in the environment: properties and distribution. Wiley, New York (1985)
Hansen, A.D.A., Rosen, H., Novakov, T.: The aethalometer — An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 36, 191–196 (1984)
Hess, M., Koepke, P., Schult., I.: Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
Jansen, K.L., Larson, T.V., Koenig, J.Q., Mar, T.F., Fields, C., Stewart, J., Lippmann, M.: Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ. Health Perspect. 113(12), 1741–1746 (2005)
Knox, A., Evans, G.J., Brook, J.R., Yao, X., Jeong, C.H., Godri, K.J., Sabaliauskas, K., Slowik, J.G.: Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci. Technol. 43(6), 522–532 (2009)
Kumar, R., Naja, M., Venkataramani, S., Wild, O.: Variations in surface ozone at Nainital: A high-altitude site in the central Himalayas. J. Geophys. Res.-Atmos., 115(D16), D16302 (2010)
Kumar, R., Naja, M., Satheesh, S.K., Ojha, N., Joshi, H., Sarangi, T., Pant, P., Dumka, U.C., Hegde, P., Venkataramani, S.: Influences of the springtime northern Indian biomass burning over the central Himalayas. J. Geophys. Res. 116, D19302 (2011)
Lavanchy, V.M.H., Gäggeler, H.W., Nyeki, S., Baltensperger, U.: Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an Aethalometer at the high-alpine research station Jungfraujoch. Atmos. Environ. 33(17), 2759–2769 (1999)
Li, H., McMeeking, G.R., May, A.A.: Development of a new correction algorithm applicable to any filter-based absorption photometer. Atmos. Meas. Tech. 13, 2865–2886 (2020)
Liousse, C., Cachier, H., Jennings, S.G.: Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ). Atmos. Environ. Part A 27(8), 1203–1211 (1993)
Liu, F., Yon, J., Fuentes, A., Lobo, P., Smallwood, G.J., Corbin, J.C.: Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54(1), 33–51 (2020)
Malaguti, A., Mircea, M., La Torretta, T.M., Telloli, C., Petralia, E., Stracquadanio, M., Berico, M.: Comparison of online and offline methods for measuring fine secondary inorganic ions and carbonaceous aerosols in the central Mediterranean area. Aerosol Air Qual. Res. 15(7), 2641–2653 (2015)
Moorthy, K.K., Babu, S.S., Sunilkumar, S.V., Gupta, P.K., Gera, B.S.: Altitude profile of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys. Res. Lett. 31, 22103 (2004)
Moorthy, K.K., Babu, S.S., Satheesh S.K., Srinivasan, J.,Dutt, C.B.S.: Dust absorption over the “Great Indian Desert” inferred using ground-based and satellite remote sensing. J. Geophys. Res. Atmos. 112, D09206 (2007)
Moorthy, K.K., Nair, V.S., Babu, S.S., Satheesh, S.K.: Spatial and vertical heterogeneities in aerosol properties over oceanic regions around India: Implications for radiative forcing. Q. J. R. Meteorol. Soc. 135, 2131–2145. https://doi.org/10.1002/qj.525 (2009)
Müller, T., Henzing, J.S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., et al.: Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmos. Meas. Tech. 4(2), 245–268 (2011)
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H.: Anthropogenic and natural radiative forcing in climate change: the physical science basis. Cambridge University Press, Cambridge (2013)
Naja, M., Mallik, C., Sarangi, T., Sheel, V., Lal, S.: SO2 measurements at a high altitude site in the central Himalayas: Role of regional transport. Atmos. Environ. 99, 392–402 (2014)
Nordmann, S., Birmili, W., Weinhold, K., Müller, K., Spindler, G., Wiedensohler, A.: Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy. J. Geophys. Res.-Atmos. 118, 12–075 (2013)
Olson, M.R., Garcia, M.V., Robinson, M.A., Rooy, P.V., Dietenberger, M.A., Bergin, M., Schauer, J.J.: Investigation of black and brown carbon multiple-wavelength‐dependent light absorption from biomass and fossil fuel combustion source emissions. J. Geophys. Res.-Atmos. 120, 6682–6697 (2015)
Pant, P., Hegde, P., Dumka, U.C., Sagar, R., Satheesh, S.K., Moorthy, K.K., Saha, A., Srivastava, M.K.: Aerosol characteristics at a high- altitude location in central Himalayas. J. Geophys. Res. 111, D17206 (2006)
Petzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C.: Recommendations for reporting “black carbon" measurements. Atmos. Chem. Phys. 13, 8365–8379 (2013)
Paige, P.J., Doraiswamy, P., Hammond, O., Rice, J.: An evaluation of mass absorption cross-section for optical carbon analysis on Teflon filter media. J. Air Waste Manag. Assoc. 67(11), 1213–1228 (2017)
Ram, K., Sarin, M.M.: Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ. Sci. Technol. 43(21), 8233–8239 (2009)
Ramanathan, V., Carmichael, G.: Global and regional climate changes due to black carbon. Nat. Geosci. 1(4), 221–227 (2008)
Ricchiazzi, P., Yang, S., Gautier, C., Sowle, D.: SBDART: A research and software tool for plane-parallel radiative transfer in the Earth’s Atmosphere. Bull. Am. Meteorol. Soc. 79, 2101 (1998)
Sandradewi, J., Prévôt, A.S.H., Alfarra, M.R., Szidat, S., Wehrli, M.N., Ruff, M., Weimer, S., Lanz, V.A., Weingartner, E., Perron, N., Caseiro, A.: Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. Discuss. 8(2), 8091–8118 (2008)
Sarangi, T., Naja, M., Ojha, N., Kumar, R., Lal, S., Chandola, H.C.: Variability in meteorological parameters and trace gases over the central Himalayas: Observations and model simulations. Vayumandal 38, 1–4 (2012)
Sarangi, T., Naja, M., Ojha, N., Kumar, R., Lal, S., Venkataramani, S., Kumar, A., Sagarand, R., Chandola, H.C.: First simultaneous measurements of ozone, CO and NOy at a high altitude regional representative site in the central Himalayas. J. Geophys. Res. 119 (2014)
Satheesh, S.K., Srinivasan., J.: A method to estimate aerosol radiative forcing from spectral optical depths. J. Atmos. Sci. 63, 1082–1092 (2006)
Satheesh, S.K., Ramanathan, V., Holben, B.N., Moorthy, K.K., Loeb, N.G., Maring, H., Prospero, J.M., Savoie, D.: Chemical, microphysical and radiative effects of Indian Ocean aerosols. J. Geophys. Res. 107(D23), 4725 (2002)
Schwarz, J.P., Gao, R.S., Spackman, J.R., Watts, L.A., Thomson, D.S., Fahey, D.W., Ryerson, T.B., Peischl, J., Holloway, J.S., Trainer, M., Frost, G.J.: Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys. Res. Lett. 35, 13 (2008)
Srivastava, P. and Naja, M.: Characteristics of carbonaceous aerosols derived from long-term high-resolution measurements at a high-altitude site in the central Himalayas: radiative forcing estimates and role of meteorology and biomass burning. Environ. Sci. Pollut. Res. 28(12), 14654-14670 (2021).
Sharma, S., Brook, J.R., Cachier, H., Chow, J., Gaudenzi, A., Lu, G.: Light absorption and thermal measurements of black carbon in different regions of Canada. J. Geophys. Res.-Atmos. 107(D24), AAC-A11 (2002)
Shukla, K.K., Phanikumar, D.V., Newsom, R.K., Kumar, K.N., Ratnam, M.V., Naja, M., Singh, N.: Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar. J. Atmos. Solar Terr. Phys. 109, 48–53 (2014)
Snyder, D.C., Schauer, J.J.: An inter-comparison of two black carbon aerosol instruments and a semi-continuous elemental carbon instrument in the urban environment. Aerosol Sci. Technol. 41(5), 463–474 (2007)
Wang, Y., Liu, S., Shi, P., Li, Y., Mu, C., Du, K.: Temporal variation of mass absorption efficiency of black carbon at urban and suburban locations. Aerosol Air Qual. Res. 13(1), 275–286 (2013)
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U.: Absorption of light by soot particles: determination of the absorption coefficient by means of Aethalometers. J. Aerosol Sci. 34(10), 1445–1463 (2003)
Acknowledgements
We are thankful to the Director ARIES and ISRO-ARFI project for supporting this study. Technical support provided, during the observations by Nitin Pal and Deepak Chausali is highly valued. TRS and PS would like to acknowledge the facilities at the IUCAA Centre for Astronomy Research and Development at the University of Delhi. TRS acknowledges the grant from SERB EMR/2016/002286. We are thankful to the Editor and three reviewers for their constructive comments that have improved the quality of the work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Rui Mao.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Srivastava, P., Naja, M., Seshadri, T.R. et al. Implications of Site‐specific Mass Absorption Cross‐section (MAC) to Black Carbon Observations at a High‐altitude Site in the Central Himalaya. Asia-Pacific J Atmos Sci 58, 83–96 (2022). https://doi.org/10.1007/s13143-021-00241-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13143-021-00241-6
Keywords
- Mass absorption cross‐section
- Elemental carbon
- Equivalent black carbon
- Aethalometer
- Himalaya