Changes in Dust Activity in Spring over East Asia under a Global Warming Scenario

Abstract

Dust activity not only influences human health through dust storms but also affects climate at local and regional scales through the direct effects of dust aerosols on both solar and longwave radiative heating. In this study, based on dust simulations from seven Coupled Model Intercomparison Project Phase 5 (CMIP5) models, the spatial and temporal changes in dust activity over East Asia under a Representative Concentration Pathway 8.5 global warming scenario were examined for the periods of 2016–2035 (P1), 2046–2065 (P2) and 2080–2099 (P3). The results show that the multimodel ensemble mean (MME) of the CMIP5 models largely captures the spatial distribution of dust emissions and dust optical depth (DOD) over East Asia during 1986–2005 (P0). The MME reproduces the increasing trend in dust emissions and DOD over dust sources in East Asia during P0. Accompanying emission reductions during P1 to P3, the DOD simultaneously decreases, and the evident DOD decline can also be found over downwind areas in eastern China and the Korean Peninsula. Simulations project increases in precipitation and the LAI (leaf area index). Simultaneously, the weakened East Asian trough leads to anomalous southerly winds and lower wind speeds at the surface. All these results indicate unfavorable conditions for dust emissions over the sources regions, resulting in a decreased DOD over East Asia during P1 to P3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 

References

  1. Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V.V., Lee, W.G., Merryfield, W.J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38(5), (2011). https://doi.org/10.1029/2010gl046270

  2. Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, D.H., Roelandt, C., Seierstad, I.A., Hoose, C., Kristjánsson, J.E.: The norwegian earth system model, noresm1-m part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6(3), 687–720 (2013). https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  3. Chen, S., Huang, J., Zhao, C., Qian, Y., Leung, L.R., Yang, B.: Modeling the transport and radiative forcing of taklimakan dust over the tibetan plateau: a case study in the summer of 2006. J. Geophys. Res. Atmos. 118(2), 797–812 (2013). https://doi.org/10.1002/jgrd.50122

    Article  Google Scholar 

  4. Chen, S., Huang, J., Qian, Y., Zhao, C., Kang, L., Yang, B., Wang, Y., Liu, Y., Yuan, T., Wang, T., Ma, X., Zhang, G.: An overview of mineral dust modeling over east asia. J. Meteorol. Res. 31(4), 633–653 (2017). https://doi.org/10.1007/s13351-017-6142-2

    Article  Google Scholar 

  5. Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., Lin, S.-J.: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res: Atmos. 106(D17), 20255–20273 (2001). https://doi.org/10.1029/2000jd000053

    Article  Google Scholar 

  6. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4(4), 1051–1075 (2011). https://doi.org/10.5194/gmd-4-1051-2011

  7. Croft, B., Lohmann, U., von Salzen, K.: Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model. Atmos. Chem. Phys. 5(7), 1931–1949 (2005). https://doi.org/10.5194/acp-5-1931-2005

    Article  Google Scholar 

  8. Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M., Golaz, J.C., Ginoux, P., Lin, S.J., Schwarzkopf, M.D., Austin, J., Alaka, G., Cooke, W.F., Delworth, T.L., Freidenreich, S.M., Gordon, C.T., Griffies, S.M., Held, I.M., Hurlin, W.J., Klein, S.A., Knutson, T.R., Langenhorst, A.R., Lee, H.C., Lin, Y., Magi, B.I., Malyshev, S.L., Milly, P.C.D., Naik, V., Nath, M.J., Pincus, R., Ploshay, J.J., Ramaswamy, V., Seman, C.J., Shevliakova, E., Sirutis, J.J., Stern, W.F., Stouffer, R.J., Wilson, R.J., Winton, M., Wittenberg, A.T., Zeng, F.: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component am3 of the gfdl global coupled model cm3. J. Clim. 24(13), 3484–3519 (2011). https://doi.org/10.1175/2011jcli3955.1

    Article  Google Scholar 

  9. Gautam, R., Hsu, N.C., Lau, W.K.M., Yasunari, T.J.: Satellite observations of desert dust-induced himalayan snow darkening. Geophys. Res. Lett. 40(5), 988–993 (2013). https://doi.org/10.1002/grl.50226

    Article  Google Scholar 

  10. Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A., Gu, W., Kim, G.K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30(13), 5419–5454 (2017). https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  11. Ginoux, P., Clarisse, L., Clerbaux, C., Coheur, P.F., Dubovik, O., Hsu, N.C., Van Damme, M.: Mixing of dust and nh3 observed globally over anthropogenic dust sources. Atmos. Chem. Phys. 12(16), 7351–7363 (2012). https://doi.org/10.5194/acp-12-7351-2012

    Article  Google Scholar 

  12. Han, Y., Wang, K., Liu, F., Zhao, T., Yin, Y., Duan, J., Luan, Z.: The contribution of dust devils and dusty plumes to the aerosol budget in western China. Atmos. Environ. 126, 21–27 (2016). https://doi.org/10.1016/j.atmosenv.2015.11.025

    Article  Google Scholar 

  13. Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., Ayers, J.K.: Long-range transport and vertical structure of asian dust from calipso and surface measurements during pacdex. J. Geophys. Res. 113(D23), (2008). https://doi.org/10.1029/2008jd010620

  14. Huang, J., Wang, T., Wang, W., Li, Z., Yan, H.: Climate effects of dust aerosols over east asian arid and semiarid regions. J. Geophys. Res. Atmos. 119(19), 11,398–11,416 (2014). https://doi.org/10.1002/2014jd021796

    Article  Google Scholar 

  15. Huang, J., Yu, H., Guan, X., Wang, G., Guo, R.: Accelerated dryland expansion under climateăchange. Nat. Clim. Chang. 6(2), 166–171 (2016). https://doi.org/10.1038/nclimate2837

    Article  Google Scholar 

  16. Kaufman, Y.J.: Dust transport and deposition observed from the terra-moderate resolution imaging spec-troradiometer (modis) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110(D10), (2005). https://doi.org/10.1029/2003jd004436

  17. Kim, T., Boo, K.O., Lee, J., Cho, C.: Analysis of the future emission changes in mineral dust aerosol in cmip5 related to bare soil and soil moisture conditions. J. Clim. Res. 9(1), 33–51 (2014). https://doi.org/10.14383/cri.2014.9.1.33

    Article  Google Scholar 

  18. Kirkevåg, A., Iversen, T., Seland, H.C., Kristjánsson, J.E., Struthers, H., Ekman, A.M.L., Ghan, S., Griesfeller, J., Nilsson, E.D., Schulz, M.: Aerosolclimate interactions in the norwegian earth system model noresm1-m. Geosci. Model Dev. 6(1), 207–244 (2013). https://doi.org/10.5194/gmd-6-207-2013

    Article  Google Scholar 

  19. Lau, K.M., Kim, K.M., Yang, S.: Dynamical and Boundary Forcing Characteristics of Regional Components of the Asian Summer Monsoon. J. Clim. 13(14), 2461–2482 (2000). https://doi.org/10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2

  20. Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen, A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M., Siefert, R.L.: Atmospheric iron deposition: global distribution, variability, and human perturbations. Ann. Rev. Mar. Sci. 1, 245–278 (2009). https://doi.org/10.1146/annurev.marine.010908.163727https://www.ncbi.nlm.nih.gov/pubmed/21141037

    Article  Google Scholar 

  21. Mahowald, N.M., Scanza, R., Brahney, J., Goodale, C.L., Hess, P.G., Moore, J.K., Neff, J.: Aerosol deposition impacts on land and ocean carbon cycles. Curr. Clim. Chang. Rep. 3(1), 16–31 (2017). https://doi.org/10.1007/s40641-017-0056-z

    Article  Google Scholar 

  22. Mao, R., Gong, D., Bao, J., Fan, Y.: Possible influence of arctic oscillation on dust storm frequency in North China. J. Geogr. Sci. 21(2), 207–218 (2011). https://doi.org/10.1007/s11442-011-0839-4

    Article  Google Scholar 

  23. Mao, R., Hu, Z., Zhao, C., Gong, D.Y., Guo, D., Wu, G.: The source contributions to the dust over the tibetan plateau: a modelling analysis. Atmos. Environ. 214, 116859 (2019). https://doi.org/10.1016/j.atmosenv.2019.116859

    Article  Google Scholar 

  24. Marticorena, B., Bergametti, G.: Modeling the atmospheric dust cycle 1, design of a soil-derived dust emission scheme. J. Geophys. Res.-Atmos. 100, 1641516430 (1995)

    Article  Google Scholar 

  25. Pu, B., Ginoux, P.: How reliable are cmip5 models in simulating dust optical depth? Atmos. Chem. Phys. 18(16), 12491–12510 (2018). https://doi.org/10.5194/acp-18-12491-2018

    Article  Google Scholar 

  26. Qian, L.S.Q.W.-H., Shi, S.Y.: Variations of the dust storm in China and its climatic control. J. Clim. 15, 1216–1229 (2002)

    Article  Google Scholar 

  27. Randles, C.A., Da Silva, A.M., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J.: The merra-2 aerosol reanalysis, 1980 - onward, part i: system description and data assimilation evaluation. J. Clim. 30(17), 6823–6850 (2017). https://doi.org/10.1175/JCLI-D-16-0609.1https://www.ncbi.nlm.nih.gov/pubmed/29576684

    Article  Google Scholar 

  28. Reader, M.C., Fung, I., McFarlane, N.: The mineral dust aerosol cycle during the last glacial maximum. J. Geophys. Res. Atmos. 104(D8), 9381–9398 (1999). https://doi.org/10.1029/1999jd900033

    Article  Google Scholar 

  29. Rind, D.: Latitudinal temperature gradients and climate change. J. Geophys. Res. Atmos. 103(D6), 5943–5971 (1998). https://doi.org/10.1029/97jd03649

    Article  Google Scholar 

  30. Seland, I.T., KirkevÅG, A.L.F., Storelvmo, T.: Aerosol-climate interactions in the cam-Oslo atmospheric gcm and investigation of associated basic shortcomings. Tellus A. 60(3), 459–491 (2008). https://doi.org/10.1111/j.1600-0870.2008.00318.x

    Article  Google Scholar 

  31. Shao, Y., Dong, C.H.: A review on east asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 52(1–4), 1–22 (2006). https://doi.org/10.1016/j.gloplacha.2006.02.011

    Article  Google Scholar 

  32. Shao, Y., Klose, M., Wyrwoll, K.H.: Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 118(19), 11,107–11,118 (2013). https://doi.org/10.1002/jgrd.50836

    Article  Google Scholar 

  33. Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Higurashi, A., Nakajima, T.: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res. Atmos. 105(D14), 17853–17873 (2000). https://doi.org/10.1029/2000jd900265

    Article  Google Scholar 

  34. Tan, S., Li, J., Gao, H., Wang, H., Che, H., Chen, B.: Satellite-observed transport of dust to the East China Sea and the north pacific subtropical gyre: contribution of dust to the increase in chlorophyll during spring 2010. Atmosphere. 7(11), (2016). https://doi.org/10.3390/atmos7110152

  35. Tang, Y., Han, Y., Liu, Z.: Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in east asiaan analysis using a new parameterization scheme for dust devils. Atmos. Environ. 182, 225–233 (2018). https://doi.org/10.1016/j.atmosenv.2018.03.050

    Article  Google Scholar 

  36. Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001). https://doi.org/10.1029/2000jd900719

    Article  Google Scholar 

  37. Tegen, I., Werner, M., Harrison, S.P., Kohfeld, K.E.: Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 31(5), (2004). https://doi.org/10.1029/2003gl019216

  38. Uno, I., Wang, Z., Chiba, M., Chun, Y.S., Gong, S.L., Hara, Y., Jung, E., Lee, S.S., Liu, M., Mikami, M., Music, S., Nickovic, S., Satake, S., Shao, Y., Song, Z., Sugimoto, N., Tanaka, T., Westphal, D.L.: Dust model intercomparison (dmip) study over asia: overview. J. Geophys. Res. 111(D12), (2006). https://doi.org/10.1029/2005jd006575

  39. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., Kawamiya, M.: Miroc-esm 2010: model description and basic results of cmip5-20c3m experiments. Geosci. Model Dev. 4(4), 845–872 (2011). https://doi.org/10.5194/gmd-4-845-2011

    Article  Google Scholar 

  40. Wu, C., Lin, Z., Liu, X., Li, Y., Lu, Z., Wu, M.: Can climate models reproduce the decadal change of dust aerosol in east asia? Geophys. Res. Lett. 45(18), 9953–9962 (2018). https://doi.org/10.1029/2018gl079376

    Article  Google Scholar 

  41. Wu, M., Liu, X., Yang, K., Luo, T., Wang, Z., Wu, C., Zhang, K., Yu, H., Darmenov, A.: Modeling dust in east asia by cesm and sources of biases. J Geophys Res Atmos. 124(14), 8043–8064 (2019). https://doi.org/10.1029/2019JD030799https://www.ncbi.nlm.nih.gov/pubmed/32637292

    Article  Google Scholar 

  42. Yin, Y., Chen, L.: The effects of heating by transported dust layers on cloud and precipitation: a numerical study. Atmos. Chem. Phys. 7, 34973505 (2007)

    Article  Google Scholar 

  43. Zhang, X.Y., Arimoto, R., Zhu, G.H., Chen, T., Zhang, G.Y.: Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus B 50(4), 317–330 (1998). https://doi.org/10.1034/j.1600-0889.1998.t01-3-00001.x

    Article  Google Scholar 

  44. Zhang, L., Hay, W.W., Wang, C., Gu, X.: The evolution of latitudinal temperature gradients from the latest cretaceous through the present. Earth Sci. Rev. 189, 147–158 (2019). https://doi.org/10.1016/j.earscirev.2019.01.025

    Article  Google Scholar 

  45. Zhao, T.L.: Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ace-asia 2001: implications for trans-pacific transport. J. Geophys. Res. 108(D23), (2003). https://doi.org/10.1029/2002jd003363

Download references

Acknowledgements

We thank Prof. Yaping Shao and Dr. Martina Klose for analyzing the dust observations from the global Met Office Integrated Data Archive System, UK Meteorological Office. This research was supported by the National Key R&D Program of China (2016YFA0602401). Mao was supported by the National Natural Science Foundation of China (41571039, 41730639). Q. Zong is supported by the Key Laboratory of Environmental Change and Natural Disaster and Engineering Research Center of Desertification and Blownsand Control. We would like to thank the high-performance computing support from the Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University [https://gda.bnu.edu.cn/].

CMIP5 data is downloaded from https://esgf-node.llnl.gov/search/cmip5/ (last access February 2020).MERRA-2 Reanalysis data is download from https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl?LOOKUPID_List=M2I3NVAER (last access February 2019). Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current) is downloaded from http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 (last access February 2020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rui Mao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsibility Editor: Yun Gon Lee

Supplementary Information

ESM 1

(DOCX 8291 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zong, Q., Mao, R., Gong, DY. et al. Changes in Dust Activity in Spring over East Asia under a Global Warming Scenario. Asia-Pacific J Atmos Sci (2021). https://doi.org/10.1007/s13143-021-00224-7

Download citation

Keywords

  • Dust activity
  • CMIP5
  • East Asia
  • Future projection