Planetary Boundary-Layer Structure at an Inland Urban Site under Sea Breeze Penetration

Abstract

We evaluated the performance of the Weather Research and Forecasting Model in simulating the boundary-layer structure at an urban site in Seoul on two clear summer days against observations made using a ceilometer, a Doppler wind lidar, and a microwave radiometer. The planetary boundary-layer height (PBLH) was estimated from two different methods using observations: the ceilometer-based method (CBM) and bulk Richardson number method (BRM). The maximum PBLH was well captured by the model but PBLH was underestimated in the late afternoon and evening. To examine the cause for underestimation of PBLH in the evening, we compared the wind and virtual potential temperature structure between the simulation and observations. The model captured the timing of the sea breeze well, but it considerably overestimated the intensity of the simulated sea breeze, resulting in an overestimated cold advection by a sea breeze. The effect of the overestimated cold advection on evening PBLH was greater when the sea breeze arrived in the late afternoon and hence the vertical extent of the sea breeze was shallow. This study underscores the importance of accurately simulating the sea breeze for PBLH prediction in the evening, over the inland urban areas under sea breeze penetration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

Observed data can be provided upon request; for further inquiries contact (Moon-Soo Park, ngeograph2@gmail.com).

References

  1. Acevedo, O.C., Fitzjarrald, D.R.: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci. 58, 2650–2667 (2001). https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2

    Article  Google Scholar 

  2. Banks, R.F., Tiana-Alsina, J., Rocadenbosch, F., Baldasano, J.M.: Performance evaluation of the boundary-layer height from lidar and the weather research and forecasting model at an urban coastal site in the north-East Iberian Peninsula. Bound.-Layer Meteorol. 157, 265–292 (2015). https://doi.org/10.1007/s10546-015-0056-2

    Article  Google Scholar 

  3. Barlow, J.F.: Progress in observing and modelling the urban boundary layer. Urban Clim. 10, 216–240 (2014). https://doi.org/10.1016/j.uclim.2014.03.011

    Article  Google Scholar 

  4. Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz Sabater, J., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., Thépaut, J-N.: ERA5 hourly data on single levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2020). (Accessed on 21 Oct 2020), https://cds.climate.copernicus-climate.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-preliminary-back-extension?tab=overview.

  5. Caicedo, V., Rappengluck, B., Lefer, B., Morris, G., Toledo, D., Delgado, R.: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech. 10, 1609–1622 (2017). https://doi.org/10.5194/amt-10-1609-2017

    Article  Google Scholar 

  6. Cimini, D., de Angelis, F., Dupont, J.C., Pal, S., Haeffelin, M.: Mixing layer height retrievals by multichannel microwave radiometer observations. Atmos. Meas. Tech. 6, 2941–2951 (2013). https://doi.org/10.5194/amt-6-2941-2013

    Article  Google Scholar 

  7. Collaud Coen, M., Praz, C., Haefele, A., Ruffieux, D., Kaufmann, P., Clapini, B.: Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos. Chem. Phys. 14, 13205–13221 (2014). https://doi.org/10.5194/acp-14-13205-2014

    Article  Google Scholar 

  8. Compton, J.C., Delgado, R., Berkoff, T.A., Hoff, R.M.: Determination of planetary boundary layer height on short spatial and temporal scales: a demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements. J. Atmos. Ocean. Technol. 30, 1566–1575 (2013). https://doi.org/10.1175/JTECH-D-12-00116.1

    Article  Google Scholar 

  9. de Tomasi, D., Miglietta, M.M., Perrone, M.R.: The growth of the planetary boundary layer at a coastal site: a case study. Bound.-Layer Meteorol. 139, 521–541 (2011). https://doi.org/10.1007/s10546-011-9592-6

    Article  Google Scholar 

  10. Denning, A.S., Zhang, N., Yi, C., Branson, M., Davis, K., Klest, J., Bakwin, P.: Evaluation of modeled atmospheric boundary layer depth at the WLEF tower. Agric. For. Meteorol. 148, 206–215 (2008). https://doi.org/10.1016/j.agrformet.2007.08.012

    Article  Google Scholar 

  11. Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989). https://doi.org/10.1175/1520-0469(1989)046<3077:nsocod>2.0.co;2

    Article  Google Scholar 

  12. Emeis, S., Schäfer, K., Münkel, C.: Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorol. Z. 18(2), 149–154 (2009). https://doi.org/10.1127/0941-2948/2009/0365

    Article  Google Scholar 

  13. Eresmaa, N., Karppinen, A., Joffre, S.M., Rasanen, J., Talvitie, H.: Mixing height determination by ceilometer. Atmos. Chem. Phys. 6, 1485–1493 (2006). https://doi.org/10.5194/acp-6-1485-2006

    Article  Google Scholar 

  14. Findell, K.L., Eltahir, E.A.B.: Atmospheric controls on soil moisture-boundary layer interaction. Part I: Framework development. J. Hydrometeorol. 4, 552–569 (2003a). https://doi.org/10.1175/1525-7541(2003)004<0552:acosml>2.0.co;2

    Article  Google Scholar 

  15. Findell, K.L., Eltahir, E.A.B.: Atmospheric controls on soil moisture-boundary layer interaction. Three-dimensional wind effects. J. Geophys. Res. 108(D8), 8385 (2003b). https://doi.org/10.1029/2001JD001515

    Article  Google Scholar 

  16. Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G.P., Lolli, S., O’Dowd, C.D., Sauvage, L., Xueref-Remy, I., Wastine, B., Feist, D.G.: Evaluation of mixing-height Retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteorol. 143, 49–75 (2012). https://doi.org/10.1007/s10546-011-9643-z

    Article  Google Scholar 

  17. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N.: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2018). (Accessed on 21 Oct 2020), https://doi.org/10.24381/cds.bd0915c6

  18. Holton, J.R.: An Introduction to Dynamic Meteorology, 4th edn. Academic Press, San Diego (2004)

    Google Scholar 

  19. Holzworth, G.C.: Estimates of mean maximum mixing depths in the contiguous Unitied States. Mon. Weather Rev. 92, 235–242 (1964). https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2

    Article  Google Scholar 

  20. Hong, S.Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006). https://doi.org/10.1175/mwr3199.1

    Article  Google Scholar 

  21. Huang, M., Gao, Z., Miao, S., Chen, F., LeMone, M.A., Li, J., Hu, F., Wang, L.: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Bound.-Layer Meteorol. 162, 503–522 (2017). https://doi.org/10.1007/s10546-016-0205-2

    Article  Google Scholar 

  22. Juang, J.Y., Porporato, A., Stoy, P.C., Siqueira, M.S., Oishi, A.C., Detto, M., Kim, H.S., Katul, G.G.: Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour. Res. 43, W03421 (2007). https://doi.org/10.1029/2006WR004954

    Article  Google Scholar 

  23. Kotthaus, S., Grimmond, C.S.B.: Atmospheric boundary-layer characteristics from ceilometer measurements. Part I: a new method to track mixed layer height and classify clouds. Quart. J. Roy. Meteor. Soc. 144, 1525–1538 (2018). https://doi.org/10.1002/qj.3299

    Article  Google Scholar 

  24. Kusaka, H., Kondo, H., Kikegawa, Y., Kimura, F.: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound.-Layer Meteor. 101, 329–358 (2001). https://doi.org/10.1023/a:1019207923078

    Article  Google Scholar 

  25. Kwon, T.H., Park, M.-S., Yi, C., Choi, Y.J.: Effects of different averaging operators on the urban turbulent fluxes. Atmosphere. KMS. 24(2), 197–206 (2014). https://doi.org/10.1419/Atmos.2014.24.2.197

    Article  Google Scholar 

  26. Lee, Y.H., Min, K.H.: High-resolution modeling study of an isolated convective storm over Seoul Metropolitan area. Meteorog. Atmos. Phys. 131(5), 1549–1564 (2019). https://doi.org/10.1007/s00703-019-0657-2

    Article  Google Scholar 

  27. Lee, S.-H., Song, C.-K., Baik, J.-J., Park, S.-U.: Estimation of anthropogenic heat emission in the Gyeong-in region of Korea. Theor. Appl. Climatol. 96, 291–303 (2009). https://doi.org/10.1007/s00704-008-0040-6

    Article  Google Scholar 

  28. Lee, Y.H., Lee, B., Kahng, K., Kim, S.J., Hong, S.O.: Quality control and characteristic of eddy covariance data in the region of Nakdong River. Atmos. Korean Met. Soc. 23(3), 307–320 (2013). https://doi.org/10.14191/atmos.2013.23.3.307

    Article  Google Scholar 

  29. Liu, X.G., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., Zhang, Y., Tian, H., Hu, M.: Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China. Atmos. Chem. Phys. 13, 4501–4514 (2013). https://doi.org/10.5194/acp-13-4501-2013

    Article  Google Scholar 

  30. Löhnert, U., Maier, O.: Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges. Atmos. Meas. Tech. 5, 1121–1134 (2012). https://doi.org/10.5194/amt-5-1121-2012

    Article  Google Scholar 

  31. Macdonald, R.W., Griffiths, R.F., Hall, D.J.: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ. 32, 1857–1864 (1998). https://doi.org/10.1016/s1352-2310(97)00403-2

    Article  Google Scholar 

  32. Mahrt, L.: Stratified atmospheric boundary layers. Bound.-Layer Meteorol. 90(3), 375–396 (1999). https://doi.org/10.1023/a:1001765727956

    Article  Google Scholar 

  33. Massaro, G., Stiperski, I., Pospichal, B., Rotach, M.W.: Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech. 8, 3355–3367 (2015). https://doi.org/10.5194/amt-8-3355-2015

    Article  Google Scholar 

  34. Melecio-Vázquez, D., Ramamurthy, P., Arend, M., González-Cruz, J.E.: Thermal structure of a coastal-urban boundary layer. Bound.-Layer Meteorol. 169, 151–161 (2018). https://doi.org/10.1007/s10546-018-0361-7

    Article  Google Scholar 

  35. Min, J.-S., Park, M.-S., Chae, J.-H., Kang, M.: Integrated system for atmospheric boundary layer height estimation (ISABLE) using a ceilometer and microwave radiometer. Atmos. Meas. Tech. Discuss. (2020). https://doi.org/10.5194/amt-2020-18, under review

  36. Mitchell, K.: The community Noah Land-Surface Model (LSM) (2005) Available online at ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1. Accessed 7 Oct 2017

  37. Mlawer, E.J., Taubman, S.J., Brown, P.D., Jacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated k-model for the long-wave. J. Geophys. Res. 102(D14), 16663–166682 (1997). https://doi.org/10.1029/97jd00237

    Article  Google Scholar 

  38. Münkel, C., Eresmaa, N., Rasanen, J., Karppinen, A.: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteorol. 124, 117–128 (2007). https://doi.org/10.1007/s10546-006-9103-3

    Article  Google Scholar 

  39. NIMR: Construction of input data for WRF-UCM using GIS and its operating method. NIMR-TN-2014-016, 47 pp. (2014).

  40. Offerle, B., Grimmond, C.S.B., Fortuniak, K.: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city Centre. Int. J. Climatol. 25, 1405–1419 (2005). https://doi.org/10.1002/joc.1198

    Article  Google Scholar 

  41. Park, M.S.: Overview of meteorological surface variables and boundary-layer structures in the Seoul metropolitan area during the MAPS-Seoul campaign. Aerosol Air Qual. Res. 18, 2157–21272 (2018). https://doi.org/10.4209/aaqr.2017.10.0428

    Article  Google Scholar 

  42. Park, S., Baik, J.: Characteristics of decaying convective boundary layers revealed by large-eddy simulations. Atmos. (MDPI). 11(434), (2020). https://doi.org/10.3390/atmos11040434

  43. Park, M.S., Chae, J.H.: Features of sea-land-breeze circulation over the Seoul metropolitan area. Geosci. Lett. 5, 28 (2018). https://doi.org/10.1186/s40562-018-0127-6

    Article  Google Scholar 

  44. Park, J.-Y., Suh, M.-S.: Improvement of MODIS land cover classification over the Asia-Oceania region. Korean J. Remote Sens. 31(2), 51–64 (2015). https://doi.org/10.7780/kjrs.2015.31.2.1

    Article  Google Scholar 

  45. Park, M.S., Park, S.H., Chae, J.H., Choi, M.H., Song, Y., Kang, M., Roh, J.W.: High-resolution urban observation network for user-specific meteorological information service in the Seoul metropolitan area, South Korea. Atmos. Meas. Tech. 10, 1575–1594 (2017). https://doi.org/10.5194/amt-10-1575-2017

    Article  Google Scholar 

  46. Pino, D., Jonker, H.J., Vila-Guerau de Arellano, J., Dosio, A.: Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales. Bound.-Layer Meteorol. 121, 537–556 (2006). https://doi.org/10.1007/s10546-006-9080-6

    Article  Google Scholar 

  47. Reuter, H.I., Nelson, A., Jarvis, A.: An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21(9), 983–1008 (2007). https://doi.org/10.1080/13658810601169899

    Article  Google Scholar 

  48. Ryu, Y.H., Baik, J.J.: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteorol. Climatol. 52, 784–800 (2013). https://doi.org/10.1175/JAMC-D-12-0157.1

    Article  Google Scholar 

  49. Saeed, U., Rocadenbosch, F., Crewell, S.: Adaptive estimation of the stable boundary layer height using combined lidar and microwave radiometer observations. IEEE Trans. Geosci. Remote Sens. 54(12), 6895–6906 (2016). https://doi.org/10.1109/tgrs.2016.2586298

    Article  Google Scholar 

  50. Sathyanadh, A., Prabha, T.V., Balaji, B., Resmi, E.A., Karipot, A.: Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges Valley. Atoms. Res. 193, 125–141 (2017). https://doi.org/10.1016/j.atmosres.2017.02.016

    Article  Google Scholar 

  51. Seibert, P., Beyrich, F., Grying, S.E., Joffre, S., Rasmussen, A., Tercier, P.: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 34, 1001–1027 (2000). https://doi.org/10.1016/s1352-2310(99)00349-0

    Article  Google Scholar 

  52. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced Research WRF version 3. In :Technical Note TN-475+STR, NCAR (2008). https://doi.org/10.5065/D68S4MVH

  53. Sorbjan, Z.: Decay of convective turbulence revisited. Bound.-Layer Meteorol. 82, 501–515 (1997). https://doi.org/10.1023/a:1000231524314

    Article  Google Scholar 

  54. Steeneveld, G.J., Tolk, L.F., Moene, A.F., Hartogensis, O.K., Peters, W., Holtslag, A.A.M.: Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: evaluating the boundary layer heat budget. J. Geophys. Res. 116, D23114 (2011). https://doi.org/10.1029/2011JD016303

    Article  Google Scholar 

  55. Stull, R.B.: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, London (1988)

    Google Scholar 

  56. Talbot, C., Augustin, P., Leroy, C., Willart, V., Delbarre, H., Khomenko, G.: Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteorol. 125, 133–154 (2007). https://doi.org/10.1007/s10546-007-9185-6

    Article  Google Scholar 

  57. Troen, I., Mahrt, L.: A simple model of the planetary boundary layer: sensitivity to surface evaporation. Bound.-Layer Meteorol. 37(129148), 129–148 (1986). https://doi.org/10.1007/bf00122760

    Article  Google Scholar 

  58. Tsaknakis, G., Papayannis, A., Kokkalis, P., Amiridis, V., Kambezidis, H.D., Mamouri, R.E., Georgoussis, G., Avdikos, G.: Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over Athens, Greece. Atmos. Meas. Tech. 4, 1261–1273 (2011). https://doi.org/10.5194/amt-4-1261-2011

    Article  Google Scholar 

  59. Tymvios, F., Charalambous, D., Michaelides, S., Lelieveld, J.: Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF-ARW model. Atmos. Res. 208, 45–59 (2018). https://doi.org/10.1016/j.atmosres.2017.09.011

    Article  Google Scholar 

  60. Van der Kamp, D., McKendry, I.: Diurnal and seasonal trends in convective mixed-layer heights estimated from two years of continuous ceilometer observations in Vancouber. B C. Bound.-Layer Meteorol. 137, 459–475 (2010). https://doi.org/10.1007/s10546-010-9535-7

    Article  Google Scholar 

  61. Wang, W., Shen, X., Huang, W.: A comparison of boundary-layer characteristics simulated using different parameterization schemes. Bound.-Layer Meteorol. 161, 375–403 (2016). https://doi.org/10.1007/s10546-016-0175-4

    Article  Google Scholar 

  62. Westwater, E.R., Han, Y., Irisov, V.G., Leuskiy, V.: Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: comparison experiments. J. Atmos. Ocean. Technol. 16, 805–818 (1999). https://doi.org/10.1109/igarss.1997.609236

    Article  Google Scholar 

  63. Yin, J., Albertson, J.D., Rigby, J.R., Porporato, A.: Land and atmospheric controls on initiation and intensity of moist convection: CAPE dynamics and LCL crossings. Water Resour. Res. 51, 8476–8493 (2015). https://doi.org/10.1002/2015WR017286

    Article  Google Scholar 

  64. Yoshikado, H., Kondo, H.: Inland penetration of the sea breeze over the suburban area of Tokyo. Bound.-Layer Meteorol. 48(4), 389–407 (1989). https://doi.org/10.1007/bf00123061

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Korea Environmental Industry & Technology Institute (KEITI) of the Korea Ministry of Environment (MOE) as “Water Management Research Program” (79615). The ceilometer, microwave radiometer, wind lidar, and surface meteorological tower data were jointly provided by the Korea Meteorological Administration (Weather Information Service Engine) and Hankuk University of Foreign Studies. We are grateful to two anonymous reviewers for providing valuable comments on this study.

Funding

The Korea Environmental Industry & Technology Institute (KEITI) of the Korea Ministry of Environment (MOE) as “Water Management Research Program” (79615).

Author information

Affiliations

Authors

Contributions

Young-Hee Lee: Organize the research paper, write manuscript and perform data analysis.

Moon-Soo Park: Take charge of tower and remote sensing measurements and estimate PBLH using ceilometer data.

Yuna Choi: Perform model and analysis of modeling results.

Corresponding author

Correspondence to Young-Hee Lee.

Ethics declarations

Conflict of Interest

Not applicable.

Code Availability

WRF model is community open software Custom codes used in this study can be provided upon request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Sang-Hyun Lee, Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, YH., Park, MS. & Choi, Y. Planetary Boundary-Layer Structure at an Inland Urban Site under Sea Breeze Penetration. Asia-Pacific J Atmos Sci (2021). https://doi.org/10.1007/s13143-020-00222-1

Download citation

Keywords

  • Ceilometer
  • Microwave radiometer
  • Sea breeze
  • Urban boundary layer
  • Weather research and forecasting model