Skip to main content
Log in

Characteristics of Raindrop Size Distribution in Seoul, South Korea According to Rain and Weather Types

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The raindrop size distribution (RSD) is useful in understanding various precipitation-related processes. Here, we analyze disdrometer data collected in Seoul, South Korea from May 2018 to July 2019 to characterize the RSD according to rain and weather types. Rain types are categorized into stratiform, mixed, and convective rain, and weather types into the Changma front (type CF) and low-pressure system (type L). The slope parameter Λ decreases and the intercept parameter N0 fluctuates with rain rate. Among the rain types, the RSD of stratiform (convective) rain shows the steepest (mildest) slope and the smallest (largest) mean diameter. The logarithm of generalized intercept parameter log10Nw and Λ for stratiform rain have considerably dispersed distributions, which may be attributed to the diversity within the stratiform rain type in Seoul. Mixed-type rain has a larger mean value of log10Nw compared to stratiform and convective rain. Regarding the weather types, the RSD of type CF exhibits a milder slope, a larger mass-weighted mean diameter, and a larger radar reflectivity than type L. These differences between the weather types can be explained by the larger convective proportion in type CF (33%) compared to type L (9%). Possible causes for the differences between the RSD characteristics of the two weather types are examined using reanalysis and satellite data. Type CF has a larger convective available potential energy, a higher cloud top, and more active ice microphysical processes than type L, which can lead to different RSD characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Atlas, D., Srivastava, R.C., Sekhon, R.S.: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 11, 1–35 (1973)

    Article  Google Scholar 

  • Barthazy, E., Gõke, S., Schefold, R., Hõgl, D.: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Ocean. Technol. 21, 1400–1416 (2004)

    Article  Google Scholar 

  • Bringi, V.N., Williams, C.R., Thurai, M., May, P.T.: Using dual-polarized radar and dual-frequency profiler for DSD characterization: a case study from Darwin. Australia. J. Atmos. Ocean. Technol. 26, 2107–2122 (2009)

    Article  Google Scholar 

  • Chen, B., Yang, J., Pu, J.: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteorol. Soc. Jpn. 91, 215–227 (2013)

    Article  Google Scholar 

  • Chen, B., Hu, Z., Liu, L., Zhang, G.: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos. 122, 11092–11106 (2017)

  • Chen, Y., Duan, J., An, J., Liu, H.: Raindrop size distribution characteristics for tropical cyclones and Meiyu-Baiu fronts impacting Tokyo, Japan. Atmosphere. 10, 391 (2019)

    Article  Google Scholar 

  • Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home (accessed 10 December 2019) (2017)

  • Das, S.K., Konwar, M., Chakravarty, K., Deshpande, S.M.: Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res. 186, 72–82 (2017)

  • Fernandez-Raga, M., Castro, A., Marcos, E., Palencia, C., Fraile, R.: Weather types and rainfall microstructure in Leon, Spain. Int. J. Climatol. 37, 1834–1842 (2017)

    Article  Google Scholar 

  • Friedrich, K., Karlina, E.A., Masters, F.J., Lopez, C.R.: Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon. Weather Rev. 141, 1182–1203 (2013)

    Article  Google Scholar 

  • Ghada, W., Buras, A., Lüpke, M., Schunk, C., Menzel, A.: Rain microstructure parameters vary with large-scale weather conditions in Lausanne, Switzerland. Remote Sens. 10, 811 (2018)

    Article  Google Scholar 

  • Houze Jr., R.A.: Cloud Dynamics, 2nd edn. Academic Press, Oxford (2014)

    Google Scholar 

  • Jaffrain, J., Berne, A.: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeorol. 12, 352–370 (2011)

    Article  Google Scholar 

  • Janapati, J., Seela, B.K., Lin, P.-L., Wang, P.K., Tseng, C.-H., Reddy, K.K., Hashiguchi, H., Feng, L., Das, S.K., Unnikrishnan, C.K.: Raindrop size distribution characteristics of Indian and Pacific Ocean tropical cyclones observed at India and Taiwan sites. J. Meteorol. Soc. Jpn. 98, 299–317 (2020)

    Article  Google Scholar 

  • Krajewski, W.F., Kruger, A., Caracciolo, C., Golé, P., Barthes, L., Creutin, J.-D., Delahaye, J.-Y., Nikolopoulos, E.I., Ogden, F., Vinson, J.-P.: DEVEX-disdrometer evaluation experiment: basic results and implications for hydrologic studies. Adv. Water Resour. 29, 311–325 (2006)

    Article  Google Scholar 

  • Loh, J.L., Lee, D.-I., You, C.-H.: Inter-comparison of DSDs between Jincheon and Miryang at South Korea. Atmos. Res. 227, 52–65 (2019)

    Article  Google Scholar 

  • Marshall, J.S., Palmer, W.M.: The distribution of raindrops with size. J. Meteorol. 5, 165–166 (1948)

    Article  Google Scholar 

  • Niu, S., Jia, X., Sang, J., Liu, X., Lu, C., Liu, Y.: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: convective versus stratiform rains. J. Appl. Meteorol. Climatol. 49, 632–645 (2010)

    Article  Google Scholar 

  • Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation, 2nd edn. Springer, Dordrecht (2010)

    Book  Google Scholar 

  • Rha, D.-K., Kwak, C.-H., Suh, M.-S., Hong, Y.: Analysis of the characteristics of precipitation over South Korea in terms of the associated synoptic patterns: a 30 years climatology (1973~2002). J. Korean Earth Sci. Soc. 26, 732–743 (in Korean with English abstract) (2005)

  • Seela, B.K., Janapati, J., Lin, P.-L., Wang, P.K., Lee, M.-T.: Raindrop size distribution characteristics of summer and winter season rainfall over north Taiwan. J. Geophys. Res. Atmos. 123, 11602–11624 (2018)

  • Sreekanth, T.S., Varikoden, H., Resmi, E.A., Kumar, G.M.: Classification and seasonal distribution of rain types based on surface and radar observations over a tropical coastal station. Atmos. Res. 218, 90–98 (2019)

    Article  Google Scholar 

  • Suh, S.-H., You, C.-H., Lee, D.-I.: Climatological characteristics of raindrop size distributions in Busan, Republic of Korea. Hydrol. Earth Syst. Sci. 20, 193–207 (2016)

    Article  Google Scholar 

  • Sui, C.-H., Tsay, C.-T., Li, X.: Convective-stratiform rainfall separation by cloud content. J. Geophys. Res. Atmos. 112, D14213 (2007)

    Article  Google Scholar 

  • Testud, J., Oury, S., Black, R.A., Amayenc, P., Dou, X.: The concept of “normalized” distribution to describe raindrop spectra: a tool for cloud physics and cloud remote sensing. J. Appl. Meteorol. 40, 1118–1140 (2001)

    Article  Google Scholar 

  • Thompson, E.J., Rutledge, S.A., Dolan, B., Thurai, M.: Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific oceans. J. Atmos. Sci. 72, 4091–4125 (2015)

  • Thurai, M., Gatlin, P.N., Bringi, V.N.: Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmos. Res. 169, 416–423 (2016)

    Article  Google Scholar 

  • Tokay, A., Short, D.A.: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol. 35, 355–371 (1996)

    Article  Google Scholar 

  • Tokay, A., Wolff, D.B., Petersen, W.A.: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 31, 1276–1288 (2014)

    Article  Google Scholar 

  • Waldvogel, A.: The N0 jump raindrop spectra. J. Atmos. Sci. 31, 1067–1078 (1974)

    Article  Google Scholar 

  • Wen, L., Zhao, K., Zhang, G., Liu, S., Chen, G.: Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-Yu season in East China. J. Atmos. Ocean. Technol. 34, 1021–1037 (2017)

    Article  Google Scholar 

  • Wen, L., Zhao, K., Wang, M., Zhang, G.: Seasonal variations of observed raindrop size distribution in East China. Adv. Atmos. Sci. 36, 346–362 (2019)

    Article  Google Scholar 

  • Wu, Z., Zhang, Y., Zhang, L., Lei, H., Xie, Y., Wen, L., Yang, J.: Characteristics of summer season raindrop size distribution in three typical regions of western Pacific. J. Geophys. Res. Atmos. 124, 4054–4073 (2019)

    Article  Google Scholar 

  • You, C.-H., Lee, D.-I., Jang, M., Kim, H.-K., Kim, J.-H., Kim, K.-E.: Variation of rainrate and radar reflectivity in Busan area and its measurement by cloud types. Asia-Pacific J. Atmos. Sci. 41, 191–200 (2005)

    Google Scholar 

  • You, C.-H., Lee, D.-I.: Decadal variation in raindrop size distributions in Busan, Korea. Adv. Meteorol. 2015(329327), (2015)

  • You, C.-H., Lee, D.-I., Kang, M.-Y., Kim, H.-J.: Classification of rain types using drop size distributions and polarimetric radar: case study of a 2014 flooding event in Korea. Atmos. Res. 181, 211–219 (2016)

    Article  Google Scholar 

  • Yuter, S.E., Kingsmill, D.E., Nance, L.B., Lőffler-Mang, M.: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteorol. Climatol. 45, 1450–1464 (2006)

    Article  Google Scholar 

  • Zhang, G., Xue, M., Cao, Q., Dawson, D.: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: model development. J. Appl. Meteorol. Climatol. 47, 2983–2992 (2008)

    Article  Google Scholar 

  • Zhang, H., Zhang, Y., He, H., Xie, Y., Zeng, Q.: Comparison of raindrop size distributions in a midlatitude continental squall line during different stages as measured by Parsivel over East China. J. Appl. Meteorol. Climatol. 56, 2097–2111 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewer for providing valuable comments. This work was supported by the Research Institute of Basic Sciences funded by the National Research Foundation of Korea (NRF-2019R1A6A1A10073437) and also supported by the Korea Meteorological Administration Research and Development Program under Grant KMI 2020-00710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Jin Baik.

Additional information

Responsible Editor: Jinwon Kim.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jwa, M., Jin, HG., Lee, J. et al. Characteristics of Raindrop Size Distribution in Seoul, South Korea According to Rain and Weather Types. Asia-Pacific J Atmos Sci 57, 605–617 (2021). https://doi.org/10.1007/s13143-020-00219-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00219-w

Keywords

Navigation