Abstract
Detailed, reliable, and continuous monitoring of aerosol optical depth (AOD) is essential for air quality management and protection of human health. The satellite-based AOD datasets have been typically used in many studies for the estimation of particulate matter (PM2.5 and PM10) concentration in the tropospheric region. The prime focus of this study is to review the past studies to analyze the performance of various satellite-based AOD datasets and models used for PM estimation. The review results suggest that every satellite sensors data have some specific capabilities as well as some drawbacks. Multi-angle imaging spectroradiometer (MISR) and visible infrared imaging radiometer suite (VIIRS) datasets showed better consistency in AOD and PM estimation in comparison to the moderate resolution imaging spectroradiometer (MODIS) datasets. In the context of PM estimation models’ accuracy, the mixed-effect model (MEM) has been extensively used and found to be more consistent in general, whereas, geographically weighted regression (GWR) model outperforms other statistical regression models in regional scale. Incorporation of land use parameters along with meteorological parameters improves the PM estimation accuracy at various spatial scale. The review suggests that in the near future, high resolution (spatial and temporal) satellite data with the improved algorithms will be highly appreciable for accurate estimation of AOD and PM.
This is a preview of subscription content, access via your institution.



Notes
World Health Organization (WHO) (https://www.who.int/airpollution/en/).
MAIA (Multi-Angle Imager for Aerosols) (https://maia.jpl.nasa.gov/).
Abbreviations
- AATSR:
-
Advanced along-track scanning radiometer
- ABI:
-
Advanced baseline imager
- AERONET:
-
AERosol RObotic NETwork
- AHI:
-
Advanced Himawari Imager
- ANN:
-
Artificial neural networks
- AOD:
-
Aerosol optical depth
- AVHRR:
-
Advanced very high-resolution radiometer
- CALIOP:
-
Cloud-aerosol lidar with orthogonal polarization
- CPCB:
-
Central pollution control board
- CTM:
-
Chemical transport model
- GAM:
-
Generalized additive model
- GEOS:
-
Geostationary operational environment satellite
- GOCI:
-
Geostationary ocean colour imager
- GTWR:
-
Geographically and temporally weighted regression
- GWR:
-
Geographically weighted regression
- IR:
-
Infrared
- LR:
-
Linear regression model
- LUR:
-
Land use regression
- MAIAC:
-
Multi-angle implementation of atmospheric correction
- MEM:
-
Mixed-effect model
- MISR:
-
Multi-angle imaging spectroradiometer
- MLR:
-
Multiple linear regression
- MODIS:
-
Moderate resolution imaging spectroradiometer
- OLS:
-
Ordinary least squares
- OMI:
-
Ozone monitoring instrument
- PBLH:
-
Planetary boundary layer height
- PM:
-
Particulate matter
- POLDER:
-
Polarization of earth’s reflectance and directionality
- RH:
-
Relative humidity
- RS:
-
Remote sensing
- SeaWiFS:
-
Sea-viewing wide field-of-view sensor
- SVR:
-
Support vector regression
- TSM:
-
Two-stage model
- UV:
-
Ultraviolet
- VIS:
-
Visible light
- VIIRS:
-
Visible infrared imaging radiometer suite
References
Alam, K., Qureshi, S., Blaschke, T.: Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos. Environ. 45, 4641–4651 (2011). https://doi.org/10.1016/j.atmosenv.2011.05.055
Albrecht, B.A.: Aerosols, cloud microphysics, and fractional cloudiness. Science. 245(4923), 1227–1230 (1989). https://doi.org/10.1126/science.245.4923.1227
Alvarado, M.J., Payne, V.H., Mlawer, E.J., Uymin, G., Shephard, M.W., Cady-Pereira, K.E., Delamere, J.S., Moncet, J.-L.: Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies. Atmos. Chem. Phys. 13(14), 6687–6711 (2013). https://doi.org/10.5194/acp-13-6687-2013
Badarinath, K.V.S.Ã., Kharol, S.K., Sharma, A.R.: Long-range transport of aerosols from agriculture crop residue burns in Indo-Gangetic Plains – a study using LIDAR, ground measurements and satellite data. Atmos. Solar-Terrestrial Phys. 71, 112–120 (2009). https://doi.org/10.1016/j.jastp.2008.09.035
Bai, K., Chang, N., Zhou, J., Gao, W., Guo, J.: Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5/AOD relationship in eastern China using radiosonde data. Environ. Pollut. 251, 380–389 (2019). https://doi.org/10.1016/j.envpol.2019.04.104
Balakrishnan, et al.: The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet. Health. 3, e26–e39 (2019). https://doi.org/10.1016/S2542-5196(18)30261-4
Baumer, D., Rinke, R., Vogel: Weekly periodicities of aerosol optical thickness over Central Europe – evidence of an anthropogenic direct aerosol effect. Atmos. Chem. Phys. 8, 83–90 (2008). https://doi.org/10.5194/acp-8-83-2008
Bilal, M., Nichol, Bleiweiss, M.P., Dubois, D.: A Simplified high-resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 136, 135–145 (2013). https://doi.org/10.1016/j.rse.2013.04.014
Bilal, M., Qiu, Z., Campbell, J.R., Spark, S.N., Shen, X., Nazeer, M.: A new MODIS C6 dark target and deep blue merged aerosol product on a 3 km spatial grid. Remote Sens. 10(3), 1–13 (2018). https://doi.org/10.3390/rs10030463
Boys, B.L., Martin, R.V., Van Donkelaar, A., Macdonell, R.J., Hsu, N.C., Cooper, M.J., Yantosca, R.M., Lu, Z., Streets, D.G., Zhang, Q., Wang, S.W.: Fifteen-year global time series of satellite-derived fine particulate matter. Fifteen-year global time series of satellite-derived fine particulate matter. Environ. Sci. Technol. 48(19), 11109–11118 (2014). https://doi.org/10.1021/es502113p
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Butt, M.J., Assiri, M.E., Ali, A.: Assessment of AOD variability over Saudi Arabia using MODIS Deep. Environ. Pollut. 231, 143–153 (2017). https://doi.org/10.1016/j.envpol.2017.07.104
Chang, H.H., Hu, X., Liu, Y.: Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling. J. Expo. Sci. Environ. Epidemiol. 24, 398–404 (2014). https://doi.org/10.1038/jes.2013.90
Che, Y., Xue, Y., Guang, J., She, L., Guo, J.: Evaluation of the AVHRR DeepBlue aerosol optical depth dataset over mainland China. ISPRS J. Photogramm. Remote Sens. 146, 74–90 (2018). https://doi.org/10.1016/j.isprsjprs.2018.09.004
Chen, G., Li, S., Knibbs, L.D., Hamm, N.A.S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M.J., Guo, Y.: A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 636, 52–60 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.251
Choi, Y.S., Park, R.J., Ho, C.H.: Estimates of ground-level aerosol mass concentrations using a chemical transport model with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol observations over East Asia. J. Geophys. Res. Atmos. 114, D04204 (2009). https://doi.org/10.1029/2008JD011041
Christopher, S.A., Gupta, P.: Satellite remote sensing of particulate matter air quality: the cloud-cover problem. J. Air Waste Manag. Assoc. 60(5), 596–602 (2012). https://doi.org/10.3155/1047-3289.60.5.596
Chu, D.A.: Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 29(12), 8007 (2002). https://doi.org/10.1029/2001GL013205
Chu, D.A., Kaufman, Y.J., Zibordi, G., Chern, J.D., Mao, J., Li, C., Holben, B.N.: Global monitoring of air pollution over land from the earth observing system-terra moderate resolution imaging spectroradiometer (MODIS): global monitoring of air pollution. J. Geophys. Res.: Atmos. 108(D21), (2003). https://doi.org/10.1029/2002JD003179
Chu, D.A., Tsai, T., Chen, J., Chang, S., Jeng, Y., Chiang, W., Lin, N.: Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements. Atmos. Environ. 79, 172–187 (2013)
Chu, Y., Liu, Y., Li, X., Liu, Z., Lu, H., Lu, Y., Mao, Z., Chen, X., Li, N., Ren, M., Liu, F., Tian, L., Zhu, Z., Xiang, H.: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere. 7, 129 (2016). https://doi.org/10.3390/atmos7100129
Chudnovsky, A.A., Lee, H.J., Kostinski, A., Kotlov, T., Chudnovsky, A.A., Lee, H.J., Kostinski, A., Kotlov, T.: Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES). J. Air Waste Manag. Assoc. 62(9), 1022–1031 (2012). https://doi.org/10.1080/10962247.2012.695321
Chudnovsky, A.A., Kostinski, A., Lyapustin, A., Koutrakis, P.: Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut. 172, 131–138 (2013a). https://doi.org/10.1016/j.envpol.2012.08.016
Chudnovsky, A., Tang, C., Lyapustin, A., Wang, Y., Schwartz, J., Koutrakis, P.: A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions. Atmos. Chem. Phys. 13, 10907–10917 (2013b). https://doi.org/10.5194/acp-13-10907-2013
Chudnovsky, A.A., Koutrakis, P., Kloog, I., Melly, S., Nordio, F., Lyapustin, A., Wang, Y., Schwartz, J.: Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmos. Environ. 89, 189–198 (2014). https://doi.org/10.1016/j.atmosenv.2014.02.019
Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M.B., Choirat, C., Koutrakis, P., Lyapustin, A., Wang, Y., Mickley, L.J., Schwartz, J.: An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 130, 104909 (2019). https://doi.org/10.1016/j.envint.2019.104909
Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., Schwartz, J.: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Techno. 50, 9, 4712–4721 (2016). https://doi.org/10.1021/acs.est.5b06121.
Donkelaar, A.V., Martin, R.V., Park, R.J.: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 111, D21201 (2006). https://doi.org/10.1029/2005JD006996
Dubovik, et al.: Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives. J. Quant Spectrosc. Radiat Transf. 224, 474–511 (2019). https://doi.org/10.1016/j.jqsrt.2018.11.024
Duncan, B.N., Prados, A.I., Lamsal, L.N., Liu, Y., Streets, D.G., Gupta, P., Hilsenrath, E., Kahn, R.A., Nielsen, J.E., Beyersdorf, A.J., Burton, S.P., Fiore, A.M., Fishman, J., Henze, D.K., Hostetler, C.A., Krotkov, N.A., Lee, P., Lin, M., Pawson, S., Gabriele, P., Pickering, K.E., Pierce, R.B., Yoshida, Y., Ziemba, L.D.: Satellite data of atmospheric pollution for U. S. air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 94, 647–662 (2014). https://doi.org/10.1016/j.atmosenv.2014.05.061
Engel-cox, J.A., Holloman, C.H., Coutant, B.W., Hoff, R.M.: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 38, 2495–2509 (2004). https://doi.org/10.1016/j.atmosenv.2004.01.039
Engel-cox, J.A., Hoff, R.M., Rogers, R., Dimmick, F., Rush, C., Szykman, J.J., Al-saadi, J., Chu, D.A., Zell, E.R.: Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmos. Environ. 40(40), 8056–8067 (2006). https://doi.org/10.1016/j.atmosenv.2006.02.039
Engel-cox, J., Thi, N., Oanh, K., Van Donkelaar, A., Martin, R.V., Zell, E.: Toward the next generation of air quality monitoring: particulate matter. Atmos. Environ. 80, 584–590 (2013). https://doi.org/10.1016/j.atmosenv.2013.08.016
Farahat, A.: Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Ann. Geophys. 37, 49–64 (2019)
Gao, L., Li, J., Chen, L., Zhang, L., Heidinger, A.K.: Retrieval and validation of atmospheric aerosol optical depth from AVHRR over China. IEEE Trans. Geosci. Remote Sens. 54(11), 6280–6291 (2016). https://doi.org/10.1109/tgrs.2016.2574756
Gao, L., Chen, L., Li, J., Heidinger, A.K., Xu, X., Qin, S.: A long-term historical aerosol optical depth data record (1982 ~ 2011) over China from AVHRR. IEEE Trans. Geosci. Remote Sens. 57(5), 2467–2480 (2019). https://doi.org/10.1109/tgrs.2018.2873944
Geng, G., Zhang, Q., Martin, R.V., Van Donkelaar, A., Huo, H., Che, H., Lin, J., He, K.: Remote sensing of environment estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 166(1), 262–270 (2015). https://doi.org/10.1016/j.rse.2015.05.016
Ghotbi, S., Sotoudeheian, S., Arhami, M.: Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmos. Environ. 141, 333–346 (2016). https://doi.org/10.1016/j.atmosenv.2016.06.057
Girolamo, L.D., Bond, T.C., Bramer, D., Diner, D.J., Fettinger, F., Kahn, R.A., Martonchik, J.V., Ramana, M.V., Ramanathan, V., Rasch, P.J.: Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys. Res. Lett. Atmos. Sci. 31, 1–5 (2004). https://doi.org/10.1029/2004GL021273
Goloub, P., Tanr, D., Deuz, J.L.: Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements. IEEE Trans. Geosci. Remote Sens. 37(3), 1586–1596 (1999). https://doi.org/10.1109/36.763270
Greed, G., Haywood, J.M., Milton, S., Keil, A., Christopher, S., Gupta, P., Highwood, E.J.: Aerosol optical depths over North Africa: 2. Modeling and model validation. J. Geophys. Res. 113, D00C05 (2008). https://doi.org/10.1029/2007jd009457
Green, M., Kondragunta, S., Ciren, P., Xu, C.: Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville, Illinois. J. Air Waste Manag. 59, 37–41 (2009). https://doi.org/10.3155/1047-3289.59.9.1082
Guo, J., Li, Y., Cohen, J. B., Li, J., Chen, D., Xu, H.,Liu, L., Yin, J., Hu, K., Zhai, P.: Shift in the temporal trend in boundary layer height trend in China using long‐term (1979–2016) radiosonde data. Geophysical Research Letters. (2019). https://doi.org/10.1029/2019GL082666.
Guo, J., Zhang, X.-y., Che, H., Gong, S., An, X., Cao, C., Guang, J., Zhang, H., Wang, Y., Zhang, X.-c., Xue, M., Li, X.: Correlation between PM concentrations and aerosol optical depth in eastern China. Atmos. Environ. 43, 5876–5886 (2009). https://doi.org/10.1016/j.atmosenv.2009.08.026
Guo, L.C., Zhang, Y., Lin, H., Zeng, W., Liu, T., Xiao, J., Rutherford, S., You, J., Ma, W. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environmental Pollution, 215, 195–202 (2016). https://doi.org/10.1016/j.envpol.2016.05.003.
Guo, Y., Feng, N., Christopher, S.A., Kang, P., Zhan, F.B., Hong, S.: Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS. Int. J. Remote Sens. 35, 6522–6544 (2014). https://doi.org/10.1080/01431161.2014.958245
Gupta, P. Particulate Matter Air Quality Assessment Over South East United States using Satellite and Ground Measurements. ProQuest Dissertations Publishing, 3338650. PhD Thesis. The University of Alabama in Huntsville, Alabama (2008).
Gupta, P., Christopher, S.A. An evaluation of Terra-MODIS sampling for monthly and annual particulate matter air quality assessment over the Southeastern United States. Atmos. Environ. 42, 6465–6471 (2008). https://doi.org/10.1016/j.atmosenv.2008.04.044
Gupta, P., Christopher, S.A.: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach. J. Geophys. Res. Atmos. 114, 1–13 (2009). https://doi.org/10.1029/2008JD011496
Gupta, P., Gadhavi, H., Jayaraman, A.: Aerosol optical depth variation observed using sun-photometer over Indore. Indian J. Radio Space Phys. 32, 229–237 (2003)
Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y., Kumar, N.: Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40(30), 5880–5892 (2006). https://doi.org/10.1016/j.atmosenv.2006.03.016
Gupta, P., Khan, M.N., Silva, A., Patadia, F.: Atmospheric pollution quantity and quality of the data for air quality monitoring. Atmos. Pollut. Res. 4, 43–52 (2013). https://doi.org/10.5094/APR.2013.005
Gupta, P., Levy, R.C., Mattoo, S., Remer, L.A., Munchak, L.A.: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm 3293–3308. Atmos. Meas. Tech. 9, 3293–3308 (2016). https://doi.org/10.5194/amt-9-3293-2016
Gupta, P., Remer, L.A., Levy, R.C., Mattoo, S. Validation of MODIS 3km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos. Meas. Tech. 11, 3145–3159 (2018). https://doi.org/10.5194/amt-11-3145-2018
Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G.: A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENS and Sentinel-2 images. Remote Sens. 7(3), 2668–2691 (2015). https://doi.org/10.3390/rs70302668
Hauser, A., Oesch, D., Wunderle, S.: Retrieval of Aerosol Optical Depth (AOD) using NOAA AVHRR data in an Alpine Environment. Proc. SPIE 5235, Remote Sensing of Clouds and the Atmosphere VIII, (16 February 2004). https://doi.org/10.1117/12.511045.
Hauser, A., Oesch, D., Foppa, N., Wunderle, S.: NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res. Atmos. 110, 1–11 (2005). https://doi.org/10.1029/2004JD005439
He, Q., Zhang, M., Huang, B.: Spatio-temporal variation and impact factors analysis of satellite- based aerosol optical depth over China from 2002 to 2015. Atmos. Environ. 129, 79–90 (2016). https://doi.org/10.1016/j.atmosenv.2016.01.002
Herman, J.R.: Global distribution of UV-absorbing aerosols from Nimbus. J. Geophys. Res. Atmos. 102, 16911–16922 (1997)
Herman, J.R., Torres, O., Hsu, N.C., Herman, J.R., Holben, B.N., Tanre, D., Eck, T.F.: Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: results and applications comparisons of the TOMS aerosol index with sun-photometer aerosol optical thickness: results and applications. J. Geophys. Res. 104(D6), 6269–6279 (1999). https://doi.org/10.1029/1998JD200086
Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R.: Aerosol properties over bright reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42, 557–569 (2004)
Hsu, N.C., Jeong, M.-J., Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang, J., Tsay, S.-C.: Enhanced deep blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118(16), 9296–9315 (2013). https://doi.org/10.1002/jgrd.50712
Hsu, N.C., Lee, J., Sayer, A.M., Carletta, N., Tucker, C.J., Holben, B.N.: Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos. 122, 9968–9989 (2017). https://doi.org/10.1002/2017JD026932
Hoff, R. M., & Christopher, S. A.: Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? Journal of the Air & Waste Management Association, 59(6), 645–675 (2009). https://doi.org/10.3155/1047-3289.59.10.1130
Hu, X., Waller, L.A., Lyapustin, A., Wang, Y., Al-Hamdan, M.Z., Crosson, W.L., Liu, Y.: Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ. 140, 220–232 (2014)
Hu, X., Belle, J.H., Meng, X., Wildani, A., Waller, L.A., Strickland, M.J., Liu, Y.: Estimating PM2.5 concentrations in the conterminous United States Using the random forest approach. Environ. Sci. Technol. 51(12), 6936–6944 (2017). https://doi.org/10.1021/acs.est.7b01210
Huene, W.V.H., Freitag, M., Burrows, J.B.: Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res. 108(D9), 4260 (2003). https://doi.org/10.1029/2001JD002018
Jethva, H., Chand, D., Torres, O., Gupta, P., Lyapustin, A., Patadia, F., Goddard, N., Flight, S.: Agricultural burning and air quality over Northern India: a synergistic analysis using NASA’ s A-train satellite data and ground measurements. Aerosol Air Qual. Res. 18, 1756–1773 (2018). https://doi.org/10.4209/aaqr.2017.12.0583
Joharestani, Z. M., Cao, C., Bashir, B., Ni, X., Talebiesfandarani, S., 2019. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere. 10(7), 373. https://doi.org/10.3390/atmos10070373
Joo, H., Coull, B.A., Bell, M.L., Koutrakis, P.: Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 118, 8–15 (2012). https://doi.org/10.1016/j.envres.2012.06.011
Jung, C., Hwang, B., Chen, W.: Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ. Pollut. 237, 1000–1010 (2018). https://doi.org/10.1016/j.envpol.2017.11.016
Just, A.C., Wright, R.O., Schwartz, J., Coull, B.A., Baccarelli, A.A., Mar, M., Moody, E., Wang, Y., Lyapustin, A., Kloog, I.: Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environ. Sci. Technol. 49(14), 8576–8584 (2015). https://doi.org/10.1021/acs.est.5b00859
Kahn, R., Banerjee, P., Mcdonald, D., Diner, D.J.: Sensitivity of multiangle imaging to aerosol optical depth and to pure-particle size distribution and composition over ocean. J. Geophys. Res. 103(D24), 32195–32213 (1998)
Kaufman, Y.J., Tanre, D., Gordon, H.R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B.M., King, M.D., Teillet, P.M.: Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. Atmos. 102, 16815–16830 (1997)
Kloog, I., Koutrakis, P., Coull, B.A., Joo, H., Schwartz, J.: Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 45, 6267–6275 (2011). https://doi.org/10.1016/j.atmosenv.2011.08.066
Kloog, I., Nordio, F., Coull, B.A., Schwartz, J.: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic States. Environ. Sci. Technol. 46(21), 11913–11921 (2012). https://doi.org/10.1021/es302673e
Knapp, K., Haar, T., Kaufman, Y.: Aerosol optical depth retrieval from GOES-8: uncertainty study and retrieval validation over South America. J. Geophys. Res. 107(D7), 4055 (2002). https://doi.org/10.1029/2001JD000505
Koelemeijer, R.B.A.Ã., Homan, C.D., Matthijsen, J.: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 40(27), 5304–5315 (2006). https://doi.org/10.1016/j.atmosenv.2006.04.044
Kong, L., Xin, J., Zhang, W., Wang, Y.: The empirical correlations between PM 2. 5, PM 10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 216, 350–360 (2016). https://doi.org/10.1016/j.envpol.2016.05.085
Kumar, N., Chu, A., Foster, A.: An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 41(21), 4492–4503 (2007). https://doi.org/10.1016/j.atmosenv.2007.01.046
Kumar, N., Foster, D.A.: Air Quality Interventions and Spatial Dynamics of Air Pollution in Delhi. Int. J. Environ. Waste Manag. 4, 85–111 (2009). https://doi.org/10.1504/IJEWM.2009.026886
Lary, D.J., Lary, T., Sattler, B.: Using machine learning to estimate global PM2.5 for environmental health studies. Environ. Health Insights. 9(s1), (2020). https://doi.org/10.1177/EHI.S15664
Lee, H.J., Liu, Y., Coull, B.A., Schwartz, J., Koutrakis, P.: A novel calibration approach of MODIS AOD data to predict PM 2.5 concentrations. Atmos. Chem. Phys. 11(15), 7991–8002 (2011). https://doi.org/10.5194/acp-11-7991-2011
Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Hsu, N.C.: The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013). https://doi.org/10.5194/amtd-6-159-2013
Levy, R.C., Munchak, L.A., Mattoo, S., Patadia, F., Remer, L.A., Holz, R.E.: Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 8(10), 4083–4110 (2015). https://doi.org/10.5194/amt-8-4083-2015
Li, L.: A robust deep learning approach for spatiotemporal estimation of satellite AOD and PM2.5. Remote Sens. 12(2), 264 (2020). https://doi.org/10.3390/rs12020264
Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K., Wang, M., Laszlo, I., Nakajima, T.: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann. Geophys. 27, 2755–2770 (2009). https://doi.org/10.5194/angeo-27-2755-2009
Li, J., Carlson, B.E., Lacis, A.A.: How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 102, 260–273 (2015). https://doi.org/10.1016/j.atmosenv.2014.12.010
Li, Z., Roy, D.P., Zhang, H.K., Vermote, E.F., Huang, H.: Evaluation of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sens. 11(2), 122 (2019). https://doi.org/10.3390/rs11020122
Liang, F., Xiao, Q., Gu, D., Xu, M., Tian, L., Guo, Q., Wu, Z., Pan, X., Liu, Y.: Satellite-based short- and long-term exposure to PM2.5 and adult mortality in urban Beijing, China. Environ. Pollut. 242, 492–499 (2018). https://doi.org/10.1016/j.envpol.2018.06.097
Liaw, A., Wiener, M.: Classification and regression by random forest. R News. 2, 18–22 (2002)
Lin, C., Li, Y., Yuan, Z., Lau, A.K.H., Li, C., Fung, J.C.H.: Remote Sensing of Environment Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 156, 117–128 (2015). https://doi.org/10.1016/j.rse.2014.09.015
Liu, Y.: New directions: satellite driven PM2.5 exposure models to support targeted particle pollution health effects research. Atmos. Environ. 68, 52–53 (2013). https://doi.org/10.1016/j.atmosenv.2012.11.043
Liu, Y., Park, R.J., Jacob, D.J., Li, Q., Kilaru, V., Sarnat, J.A.: Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous United States. J. Geophys. Res.: Atmos. 109(D22), (2004). https://doi.org/10.1029/2004JD005025
Liu, Y., Sarnat, J.A., Kilaru, V., Jacob, D.J., Koutrakis, P.: Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. Environ. Sci. Technol. 39, 3269–3278 (2005)
Martin, R.V.: Satellite remote sensing of surface air quality. Atmos. Environ. 42(34), 7823–7843 (2008). https://doi.org/10.1016/j.atmosenv.2008.07.018.
Mei, L.L., Xue, Y., Kokhanovsky, A.A., De Leeuw, G., Burrows, J.P.: Retrieval of aerosol optical depth over land surfaces from AVHRR data 2411–2420. Atmos. Meas. Tech. 7(8), 2411–2420 (2014). https://doi.org/10.5194/amt-7-2411-2014
Mei, L., Strandgren, J., Rozanov, V., Vountas, M., Burrows, J.P., Wang, Y.: A study of the impact of spatial resolution on the estimation of particle matter concentration from the aerosol optical depth retrieved from satellite observations. Int. J. Remote Sens. 40, 7084–7112 (2019). https://doi.org/10.1080/01431161.2019.1601279
Mirzaei, M., Bertazzon, S., Couloigner, I.: OLS and GWR LUR models of wildfire smoke using remote sensing and spatiotemporal data in Alberta. Spat Knowl Inf Can. 7(2), 3 (2018)
Mishchenko, M.I., Geogdzhayev, I.V., Rossow, W.B., Cairns, B., Carlson, B.E., Lacis, A.A., Liu, L., Travis, L.D.: Long-term satellite record reveals likely recent aerosol trend. Sci. Sci. 315(5818), 1543–1543 (2007). https://doi.org/10.1126/science.1136709
Ni, X., Cao, C., Zhou, Y., Cui, X., Singh, R.P.: Spatio-temporal pattern estimation of PM2.5 in Beijing-Tianjin-Hebei region based on MODIS AOD and meteorological data using the back propagation neural network. Atmosphere. 9, 105 (2018). https://doi.org/10.3390/atmos9030105
Nordio, F., Kloog, I., Coull, B.A., Chudnovsky, A., Grillo, P., Alberto, P., Baccarelli, A.A., Schwartz, J.: Estimating spatio-temporal resolved PM 10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy, Italy. Atmos. Environ. 74, 227–236 (2013). https://doi.org/10.1016/j.atmosenv.2013.03.043
Othman, N., Mat-Jafri, M.Z., San, L.H.: Estimating particulate matter concentration over arid region using satellite remote sensing: a case study in Makkah, Saudi Arabia. Mod. Appl. Sci. 4, 11131–11142 (2010a)
Othman, N., Mat-Jafri, M.Z., San, L.H.: Estimating particulate matter concentration over arid region using satellite remote sensing: a case study in Makkah, Saudi Arabia. Mod. Appl. Sci. 4, 11–21 (2010b)
Paciorek, C., Liu, Y., Moreno-Macias, H., Kondragunta, S.: Spatio-temporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environ. Sci. Technol. 42, 5800–5806 (2008)
Park, S., Shin, M., Im, J., Song, C.-K., Choi, M., Kim, J., Lee, S., Park, R., Kim, J., Lee, D.-W., Kim, S.-K.: Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmos. Chem. Phys. 19(2), 1097–1113 (2019). https://doi.org/10.5194/acp-19-1097-2019
Park, S., Lee, J., Im, J., Song, C.-K., Choi, M., Kim, J., Lee, S., Park, R., Kim, S.-M., Yoon, J., Lee, D.-W., Quackenbush, L.J.: Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Sci. Total Environ. 713, 136516 (2020). https://doi.org/10.1016/j.scitotenv.2020.136516
Patadia, F., Levy, R.C., Mattoo, S.: Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation. Atmos. Meas. Tech. 11(6), 3205–3219 (2018). https://doi.org/10.5194/amt-11-3205-2018
Péré, J., Pont, V., Mallet, M., Bessagnet, B.: Mapping of PM10 surface concentrations derived from satellite observations of aerosol optical thickness over South-Eastern France. Atmos. Res. 91, 1–8 (2009). https://doi.org/10.1016/j.atmosres.2008.05.001
Prados, A.I., Kondragunta, S., Ciren, P., Knapp, K.R.: GOES Aerosol/Smoke Product (GASP) over North America: comparisons to AERONET and MODIS observations. J. Geophys. Res. 112(D15), (2007). https://doi.org/10.1029/2006JD007968
Prasad, S., Gupta, R.K.: Estimation and evaluation of aerosol optical depth using NOAA AVHRR data. Adv. Space Res. 22(11), 1525–1528 (1999). https://doi.org/10.1016/S0273-1177(99)00020-4
Prasad, A.K., Singh, R.P.: Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens. Environ. 107(1–2), 109–119 (2007). https://doi.org/10.1016/j.rse.2006.09.026
Prasad, K., Ellicott, E., Badarinath, K.V.S., Vermote, E.: MODIS derived fi re characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 159, 1560–1569 (2011). https://doi.org/10.1016/j.envpol.2011.03.001
Ranjan, A. K., Patra, A. K., Gorai, A. K.: Effect of lockdown due to SARS COVID-19 on aerosol optical depth (AOD) over urban and mining regions in India. Science of The Total Environment, 745, 141024 (2020). https://doi.org/10.1016/j.scitotenv.2020.141024.
Ramachandran, G., Adgate, J.L., Pratt, G.C., Sexton, K.: Characterizing indoor and outdoor 15 min average PM2.5 concentrations in urban neighborhoods. Aerosol Sci. Technol. 37, 33–45 (2003)
Reid, C.E., Jerrett, M., Petersen, M.L., Pfister, G.G., Morefield, P.E., Tager, I.B., Raffuse, S.M., Balmes, J.R.: Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning. Environ. Sci. Technol. 49(6), 3887–3896 (2015). https://doi.org/10.1021/es505846r
Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A.: MODIS 3-km aerosol product: algorithm and global perspective. Atmos. Meas. Tech. 6(7), 1829–1844 (2013). https://doi.org/10.5194/amt-6-1829-2013
Rosenfeld, D., Lohmann, U., Raga, G.B., O’Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., Andreae, M.O.: Flood or drought: how do aerosols affect precipitation? Science. 321(5894), 1309–1313 (2008). https://doi.org/10.1126/science.1160606
Roy, A., Jivani, A., Parekh, B.: Estimation of PM10 distribution using Landsat 7 ETM+ remote sensing data. Int. J. Adv. Remote Sens. GIS. 6(1), 2246–2252 (2017). https://doi.org/10.23953/cloud.ijarsg.284
Saleh, S.H.A., Hasan, G.: Estimation of PM10 concentration using ground measurements and Landsat 8 OLI satellite image. J. Geophys. Remote Sens. 3(2), 120 (2014). https://doi.org/10.4172/2169-0049.100012
Saraswat, I., Mishra, R.K., Kumar, A.: Remote sensing applications: society and environment estimation of PM10 concentration from Landsat 8 OLI satellite imagery over. Remote Sens. Appl.: Soc. Environ. 8, 251–257 (2017). https://doi.org/10.1016/j.rsase.2017.10.006
Schaap, M., Timmermans, R.M.A., Koelemeijer, R.B.A.: Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ. 42(9), 2187–2197 (2008). https://doi.org/10.1016/j.atmosenv.2007.11.044
Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., De Leeuw, G.: Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 9, 909–925 (2009)
Shaw, N., Gorai, A.K.: Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration. Environ. Dev. Sustain. 22, 265–279 (2020). https://doi.org/10.1007/s10668-018-0198-8
Shin, M., Kang, Y., Park, S., Im, J., Yoo, C., Quackenbush, L.J.: Estimating ground-level particulate matter concentrations using satellite-based data: a review. GISci. Remote Sens. 57(2), 174–189 (2020). https://doi.org/10.1080/15481603.2019.1703288
Sinha, P.R., Gupta, P., Kaskaoutis, D.G., Sahu, L.K., Nagendra, N., Manchanda, R.K., Kumar, Y.B., Sreenivasan, S.: Estimation of particulate matter from satellite- and ground-based observations over Hyderabad, India. Int. J. Remote Sens. 36, 6192–6213 (2015). https://doi.org/10.1080/01431161.2015.1112929
Sorek-hamer, M., Strawa, A.W., Chat, R.B., Esswein, R., Cohen, A., Broday, D.M.: Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environ. Pollut. 182, 417–423 (2013). https://doi.org/10.1016/j.envpol.2013.08.002
Sowden, M., Mueller, U., Blake, D.: Review of surface particulate monitoring of dust events using geostationary satellite remote sensing. Atmos. Environ. 183, 154–164 (2018). https://doi.org/10.1016/j.atmosenv.2018.04.020
Srivastava, P., Dey, S., Agarwal, P., Basil, G.: Aerosol characteristics over Delhi national capital region: a satellite view. Int. J. Remote Sens. 35, 5036–5052 (2014). https://doi.org/10.1080/01431161.2014.934404
Srivastava, A., Saran, S.: Comprehensive study on AOD trends over the Indian subcontinent: a statistical approach. Int. J. Remote Sens. 38, 5127–5149 (2017). https://doi.org/10.1080/01431161.2017.1323284
Tiwari, S., Srivastava, A.K., Bisht, D.S., Bano, T., Singh, S., Behura, S., Srivastava, M.K., Chate, D.M., Padmanabhamurty, B.: Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J. Atmos. Chem. 62, 193–209 (2009). https://doi.org/10.1007/s10874-010-9148-z
Torres, O., Bhartia, P.K., Herman, J.R., Sinyuk, A., Ginoux, P., Holben, B.: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 59, 398–413 (2002)
Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34(7), 1149–1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
Van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C.: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ. Health Perspect. 118(6), 847–855 (2010). https://doi.org/10.1289/ehp.0901623
Veihelmann, B., Levelt, P.F., Stammes, P., Veefkind, J.P.: Simulation study of the aerosol information content in OMI spectral reflectance measurements. Atmos. Chem. Phys. 7, 3115–3127 (2007). https://doi.org/10.5194/acp-7-3115-2007
Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., Morcette, J.-J.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35(3), 675–686 (1997). https://doi.org/10.1109/36.581987
Vidot, J., Santer, R., Ramon, D.: Atmospheric particulate matter (PM) estimation from SeaWiFS imagery. J. Geophys. Res. 112(D6), (2010). https://doi.org/10.1029/2005JD006737
Wallace, J., Kanaroglou, P.: An investigation of air pollution in southern Ontario, Canada, with MODIS and MISR aerosol data. IEEE Int. Geosci. Remote Sens. Symp. (2007). https://doi.org/10.1109/igarss.2007.4423805
Wang, J., Christopher, S.A.: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys. Res. Lett. 30(21), 2095 (2003). https://doi.org/10.1029/2003gl018174
Wang, J., Xu, X., Spurr, R., Wang, Y., Drury, E.: Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: implications for air quality monitoring in China. Remote Sens. Environ. 114, 2575–2583 (2010). https://doi.org/10.1016/j.rse.2010.05.034
Weber, S. A., Engel-Cox, J. A., Hoff, R. M., Prados, A. I., Zhang, H.: An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth. Journal of the Air & Waste Management Association, 60(5), 574–585 (2010). https://doi.org/10.3155/1047-3289.60.5.574.
Weber, S.A., Insaf, T.Z., Hall, E.S., Talbot, T.O., Huff, A.K.: Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates. Environ. Res. 151, 399–409 (2016). https://doi.org/10.1016/j.envres.2016.07.012
Wei, J., Huang, B., Sun, L., Zhang, Z., Wang, L., Bilal, M.: A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces. J. Geophys. Res. Atmos. 122, 13338–13355 (2017). https://doi.org/10.1002/2017JD026922
Weizhen, H., Zhengqiang, L., Yuhuan, Z., Hua, X., Ying, Z., Kaitao, L., Donghui, L., Peng, W., Yan, M.: Using support vector regression to predict PM10 and PM2.5. IOP Conf. Ser.: Earth Environ. Sci. 17, 012268 (2014). https://doi.org/10.1088/1755-1315/17/1/012268
World Health Organization (WHO) (2020). Air Pollution. (https://www.who.int/airpollution/en/). Accessed 7 Jan 2020
Wu, Y., Guo, J., Zhang, X., Tian, X., Zhang, J.: Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Sci. Total Environ. 433, 20–30 (2012). https://doi.org/10.1016/j.scitotenv.2012.06.033
Wu, X., Wang, Y., He, S., Wu, Z.: PM2:5/PM10 ratio prediction based on a long short-term memory neural network in Wuhan, China. Geosci. Model Dev. 13(3), 1499–1511 (2020). https://doi.org/10.5194/gmd-13-1499-2020
Xin, J., Zhang, Q., Wang, L., Gong, C., Wang, Y., Liu, Z., Gao, W.: The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos. Res. 138, 179–188 (2014). https://doi.org/10.1016/j.atmosres.2013.11.001
Xu, Y., Ho, H.C., Wong, M.S., Deng, C., Shi, Y., Chan, T.-C., Knudby, A.: Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 242, 1417–1426 (2018). https://doi.org/10.1016/j.envpol.2018.08.029
Xue, Y., He, X., Leeuw, G.D., Mei, L., Che, Y., Rippin, W.: Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sens. Environ. 198, 471–489 (2017). https://doi.org/10.1016/j.rse.2017.06.036
Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., Zhang, Q.: Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ. Int. 123, 345–357 (2019). https://doi.org/10.1016/j.envint.2018.11.075
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H.: The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: about and behind the spatio-temporal variations. Environ. Pollut. 248, 526–535 (2019). https://doi.org/10.1016/j.envpol.2019.02.071
Yao, F., Si, M., Li, W., Wu, J.: Science of the total environment a multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Sci. Total Environ. 15(618), 819–828 (2017). https://doi.org/10.1016/j.scitotenv.2017.08.209
Yap, X.Q., Hashim, M.: A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 13, 3517–3526 (2013). https://doi.org/10.5194/acpd-12-31483-2012
You, W., Zang, Z., Pan, X., Zhang, L., Chen, D.: Estimating PM2.5 in Xian, China using aerosol optical depth: a comparison between the MODIS and MISR retrieval models. Sci. Total Environ. 505, 1156–1165 (2014). https://doi.org/10.1016/j.scitotenv.2014.11.024
You, W., Zang, Z., Zhang, L., Zhang, M., Pan, X., Li, Y., 2016a. A nonlinear model for estimating ground-level PM10 concentration in Xi’an using MODIS aerosol optical depth retrieval. Atmos. Res. 168, 169–179. https://doi.org/10.1016/j.atmosres.2015.09.008
You, W., Zang, Z., Zhang, L., Li, Y., Wang, W., 2016b. Estimating national-scale ground-level PM2.5 concentrations in China using geographically weighted regression based on MODIS and MISR AOD. Environ. Sci. Pollut. Res. 23(9), 8327–8338. https://doi.org/10.1007/s11356-015-6027-9
Zeeshan, M., Oanh, N.T.K.: Science of the total environment assessment of the relationship between satellite AOD and ground PM 10 measurement data considering synoptic meteorological patterns and LIDAR data. Sci. Total Environ. 474, 609–618 (2014)
Zhan, Y., Luo, Y., Deng, X., Chen, H., Grieneisen, M.L., Shen, X., Zhu, L., Zhang, M.: Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 155, 129–139 (2017). https://doi.org/10.1016/j.atmosenv.2017.02.023
Zhang, Y., Li, Z.: Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 160, 252–262 (2015). https://doi.org/10.1016/j.rse.2015.02.005
Zhang, H., Hoff, R.M., Engel-cox, J.A., Zhang, H., Hoff, R.M., Engel-cox, J.A.: The relation between moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U. S. environmental protection agency regions. J. Air Waste Manag. 59(11), 1358–1369 (2009). https://doi.org/10.3155/1047-3289.59.11.1358.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 60, 632–655 (2012). https://doi.org/10.1016/j.atmosenv.2012.06.031
Zhang, R., Di, B., Luo, Y., Deng, X., Grieneisen, M.L., Wang, Z., Yao, G., Zhan, Y.: A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels. Environ. Pollut. 243, 998–1007 (2018a). https://doi.org/10.1016/j.envpol.2018.09.052
Zhang, G., Rui, X., Fan, Y.: Critical review of methods to estimate PM2.5 concentrations within specified research region. ISPRS Int. J. Geo-Inf. 7(9), 368 (2018b). https://doi.org/10.3390/ijgi7090368
Acknowledgements
Authors sincerely thanks to all the anonymous reviewers and responsible editor for their insightful review and giving constructive comments which have certainly enhanced the overall quality of the manuscript. Authors also sincerely acknowledge the articles which have been used in this review paper.
Funding
This research was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, grant no. 24(0352)/18/EMR-II.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Authors declare no potential conflict of interest.
Additional information
Responsible Editor: Chang-Keun Song.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ranjan, A.K., Patra, A. & Gorai, A.K. A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges. Asia-Pacific J Atmos Sci 57, 679–699 (2021). https://doi.org/10.1007/s13143-020-00215-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13143-020-00215-0