Skip to main content

A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges

Abstract

Detailed, reliable, and continuous monitoring of aerosol optical depth (AOD) is essential for air quality management and protection of human health. The satellite-based AOD datasets have been typically used in many studies for the estimation of particulate matter (PM2.5 and PM10) concentration in the tropospheric region. The prime focus of this study is to review the past studies to analyze the performance of various satellite-based AOD datasets and models used for PM estimation. The review results suggest that every satellite sensors data have some specific capabilities as well as some drawbacks. Multi-angle imaging spectroradiometer (MISR) and visible infrared imaging radiometer suite (VIIRS) datasets showed better consistency in AOD and PM estimation in comparison to the moderate resolution imaging spectroradiometer (MODIS) datasets. In the context of PM estimation models’ accuracy, the mixed-effect model (MEM) has been extensively used and found to be more consistent in general, whereas, geographically weighted regression (GWR) model outperforms other statistical regression models in regional scale. Incorporation of land use parameters along with meteorological parameters improves the PM estimation accuracy at various spatial scale. The review suggests that in the near future, high resolution (spatial and temporal) satellite data with the improved algorithms will be highly appreciable for accurate estimation of AOD and PM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. World Health Organization (WHO) (https://www.who.int/airpollution/en/).

  2. MAIA (Multi-Angle Imager for Aerosols) (https://maia.jpl.nasa.gov/).

Abbreviations

AATSR:

Advanced along-track scanning radiometer

ABI:

Advanced baseline imager

AERONET:

AERosol RObotic NETwork

AHI:

Advanced Himawari Imager

ANN:

Artificial neural networks

AOD:

Aerosol optical depth

AVHRR:

Advanced very high-resolution radiometer

CALIOP:

Cloud-aerosol lidar with orthogonal polarization

CPCB:

Central pollution control board

CTM:

Chemical transport model

GAM:

Generalized additive model

GEOS:

Geostationary operational environment satellite

GOCI:

Geostationary ocean colour imager

GTWR:

Geographically and temporally weighted regression

GWR:

Geographically weighted regression

IR:

Infrared

LR:

Linear regression model

LUR:

Land use regression

MAIAC:

Multi-angle implementation of atmospheric correction

MEM:

Mixed-effect model

MISR:

Multi-angle imaging spectroradiometer

MLR:

Multiple linear regression

MODIS:

Moderate resolution imaging spectroradiometer

OLS:

Ordinary least squares

OMI:

Ozone monitoring instrument

PBLH:

Planetary boundary layer height

PM:

Particulate matter

POLDER:

Polarization of earth’s reflectance and directionality

RH:

Relative humidity

RS:

Remote sensing

SeaWiFS:

Sea-viewing wide field-of-view sensor

SVR:

Support vector regression

TSM:

Two-stage model

UV:

Ultraviolet

VIS:

Visible light

VIIRS:

Visible infrared imaging radiometer suite

References

  • Alam, K., Qureshi, S., Blaschke, T.: Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos. Environ. 45, 4641–4651 (2011). https://doi.org/10.1016/j.atmosenv.2011.05.055

    Article  Google Scholar 

  • Albrecht, B.A.: Aerosols, cloud microphysics, and fractional cloudiness. Science. 245(4923), 1227–1230 (1989). https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  • Alvarado, M.J., Payne, V.H., Mlawer, E.J., Uymin, G., Shephard, M.W., Cady-Pereira, K.E., Delamere, J.S., Moncet, J.-L.: Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies. Atmos. Chem. Phys. 13(14), 6687–6711 (2013). https://doi.org/10.5194/acp-13-6687-2013

    Article  Google Scholar 

  • Badarinath, K.V.S.Ã., Kharol, S.K., Sharma, A.R.: Long-range transport of aerosols from agriculture crop residue burns in Indo-Gangetic Plains – a study using LIDAR, ground measurements and satellite data. Atmos. Solar-Terrestrial Phys. 71, 112–120 (2009). https://doi.org/10.1016/j.jastp.2008.09.035

    Article  Google Scholar 

  • Bai, K., Chang, N., Zhou, J., Gao, W., Guo, J.: Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5/AOD relationship in eastern China using radiosonde data. Environ. Pollut. 251, 380–389 (2019). https://doi.org/10.1016/j.envpol.2019.04.104

    Article  Google Scholar 

  • Balakrishnan, et al.: The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet. Health. 3, e26–e39 (2019). https://doi.org/10.1016/S2542-5196(18)30261-4

    Article  Google Scholar 

  • Baumer, D., Rinke, R., Vogel: Weekly periodicities of aerosol optical thickness over Central Europe – evidence of an anthropogenic direct aerosol effect. Atmos. Chem. Phys. 8, 83–90 (2008). https://doi.org/10.5194/acp-8-83-2008

    Article  Google Scholar 

  • Bilal, M., Nichol, Bleiweiss, M.P., Dubois, D.: A Simplified high-resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 136, 135–145 (2013). https://doi.org/10.1016/j.rse.2013.04.014

    Article  Google Scholar 

  • Bilal, M., Qiu, Z., Campbell, J.R., Spark, S.N., Shen, X., Nazeer, M.: A new MODIS C6 dark target and deep blue merged aerosol product on a 3 km spatial grid. Remote Sens. 10(3), 1–13 (2018). https://doi.org/10.3390/rs10030463

    Article  Google Scholar 

  • Boys, B.L., Martin, R.V., Van Donkelaar, A., Macdonell, R.J., Hsu, N.C., Cooper, M.J., Yantosca, R.M., Lu, Z., Streets, D.G., Zhang, Q., Wang, S.W.: Fifteen-year global time series of satellite-derived fine particulate matter. Fifteen-year global time series of satellite-derived fine particulate matter. Environ. Sci. Technol. 48(19), 11109–11118 (2014). https://doi.org/10.1021/es502113p

    Article  Google Scholar 

  • Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  • Butt, M.J., Assiri, M.E., Ali, A.: Assessment of AOD variability over Saudi Arabia using MODIS Deep. Environ. Pollut. 231, 143–153 (2017). https://doi.org/10.1016/j.envpol.2017.07.104

    Article  Google Scholar 

  • Chang, H.H., Hu, X., Liu, Y.: Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling. J. Expo. Sci. Environ. Epidemiol. 24, 398–404 (2014). https://doi.org/10.1038/jes.2013.90

    Article  Google Scholar 

  • Che, Y., Xue, Y., Guang, J., She, L., Guo, J.: Evaluation of the AVHRR DeepBlue aerosol optical depth dataset over mainland China. ISPRS J. Photogramm. Remote Sens. 146, 74–90 (2018). https://doi.org/10.1016/j.isprsjprs.2018.09.004

    Article  Google Scholar 

  • Chen, G., Li, S., Knibbs, L.D., Hamm, N.A.S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M.J., Guo, Y.: A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 636, 52–60 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.251

    Article  Google Scholar 

  • Choi, Y.S., Park, R.J., Ho, C.H.: Estimates of ground-level aerosol mass concentrations using a chemical transport model with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol observations over East Asia. J. Geophys. Res. Atmos. 114, D04204 (2009). https://doi.org/10.1029/2008JD011041

    Article  Google Scholar 

  • Christopher, S.A., Gupta, P.: Satellite remote sensing of particulate matter air quality: the cloud-cover problem. J. Air Waste Manag. Assoc. 60(5), 596–602 (2012). https://doi.org/10.3155/1047-3289.60.5.596

    Article  Google Scholar 

  • Chu, D.A.: Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. 29(12), 8007 (2002). https://doi.org/10.1029/2001GL013205

    Article  Google Scholar 

  • Chu, D.A., Kaufman, Y.J., Zibordi, G., Chern, J.D., Mao, J., Li, C., Holben, B.N.: Global monitoring of air pollution over land from the earth observing system-terra moderate resolution imaging spectroradiometer (MODIS): global monitoring of air pollution. J. Geophys. Res.: Atmos. 108(D21), (2003). https://doi.org/10.1029/2002JD003179

  • Chu, D.A., Tsai, T., Chen, J., Chang, S., Jeng, Y., Chiang, W., Lin, N.: Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements. Atmos. Environ. 79, 172–187 (2013)

    Article  Google Scholar 

  • Chu, Y., Liu, Y., Li, X., Liu, Z., Lu, H., Lu, Y., Mao, Z., Chen, X., Li, N., Ren, M., Liu, F., Tian, L., Zhu, Z., Xiang, H.: A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere. 7, 129 (2016). https://doi.org/10.3390/atmos7100129

    Article  Google Scholar 

  • Chudnovsky, A.A., Lee, H.J., Kostinski, A., Kotlov, T., Chudnovsky, A.A., Lee, H.J., Kostinski, A., Kotlov, T.: Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES). J. Air Waste Manag. Assoc. 62(9), 1022–1031 (2012). https://doi.org/10.1080/10962247.2012.695321

    Article  Google Scholar 

  • Chudnovsky, A.A., Kostinski, A., Lyapustin, A., Koutrakis, P.: Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut. 172, 131–138 (2013a). https://doi.org/10.1016/j.envpol.2012.08.016

    Article  Google Scholar 

  • Chudnovsky, A., Tang, C., Lyapustin, A., Wang, Y., Schwartz, J., Koutrakis, P.: A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions. Atmos. Chem. Phys. 13, 10907–10917 (2013b). https://doi.org/10.5194/acp-13-10907-2013

    Article  Google Scholar 

  • Chudnovsky, A.A., Koutrakis, P., Kloog, I., Melly, S., Nordio, F., Lyapustin, A., Wang, Y., Schwartz, J.: Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmos. Environ. 89, 189–198 (2014). https://doi.org/10.1016/j.atmosenv.2014.02.019

    Article  Google Scholar 

  • Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M.B., Choirat, C., Koutrakis, P., Lyapustin, A., Wang, Y., Mickley, L.J., Schwartz, J.: An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 130, 104909 (2019). https://doi.org/10.1016/j.envint.2019.104909

    Article  Google Scholar 

  • Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., Schwartz, J.: Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Techno. 50, 9, 4712–4721 (2016). https://doi.org/10.1021/acs.est.5b06121.

  • Donkelaar, A.V., Martin, R.V., Park, R.J.: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 111, D21201 (2006). https://doi.org/10.1029/2005JD006996

    Article  Google Scholar 

  • Dubovik, et al.: Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives. J. Quant Spectrosc. Radiat Transf. 224, 474–511 (2019). https://doi.org/10.1016/j.jqsrt.2018.11.024

    Article  Google Scholar 

  • Duncan, B.N., Prados, A.I., Lamsal, L.N., Liu, Y., Streets, D.G., Gupta, P., Hilsenrath, E., Kahn, R.A., Nielsen, J.E., Beyersdorf, A.J., Burton, S.P., Fiore, A.M., Fishman, J., Henze, D.K., Hostetler, C.A., Krotkov, N.A., Lee, P., Lin, M., Pawson, S., Gabriele, P., Pickering, K.E., Pierce, R.B., Yoshida, Y., Ziemba, L.D.: Satellite data of atmospheric pollution for U. S. air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 94, 647–662 (2014). https://doi.org/10.1016/j.atmosenv.2014.05.061

    Article  Google Scholar 

  • Engel-cox, J.A., Holloman, C.H., Coutant, B.W., Hoff, R.M.: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 38, 2495–2509 (2004). https://doi.org/10.1016/j.atmosenv.2004.01.039

    Article  Google Scholar 

  • Engel-cox, J.A., Hoff, R.M., Rogers, R., Dimmick, F., Rush, C., Szykman, J.J., Al-saadi, J., Chu, D.A., Zell, E.R.: Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmos. Environ. 40(40), 8056–8067 (2006). https://doi.org/10.1016/j.atmosenv.2006.02.039

    Article  Google Scholar 

  • Engel-cox, J., Thi, N., Oanh, K., Van Donkelaar, A., Martin, R.V., Zell, E.: Toward the next generation of air quality monitoring: particulate matter. Atmos. Environ. 80, 584–590 (2013). https://doi.org/10.1016/j.atmosenv.2013.08.016

    Article  Google Scholar 

  • Farahat, A.: Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Ann. Geophys. 37, 49–64 (2019)

    Article  Google Scholar 

  • Gao, L., Li, J., Chen, L., Zhang, L., Heidinger, A.K.: Retrieval and validation of atmospheric aerosol optical depth from AVHRR over China. IEEE Trans. Geosci. Remote Sens. 54(11), 6280–6291 (2016). https://doi.org/10.1109/tgrs.2016.2574756

    Article  Google Scholar 

  • Gao, L., Chen, L., Li, J., Heidinger, A.K., Xu, X., Qin, S.: A long-term historical aerosol optical depth data record (1982 ~ 2011) over China from AVHRR. IEEE Trans. Geosci. Remote Sens. 57(5), 2467–2480 (2019). https://doi.org/10.1109/tgrs.2018.2873944

    Article  Google Scholar 

  • Geng, G., Zhang, Q., Martin, R.V., Van Donkelaar, A., Huo, H., Che, H., Lin, J., He, K.: Remote sensing of environment estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 166(1), 262–270 (2015). https://doi.org/10.1016/j.rse.2015.05.016

    Article  Google Scholar 

  • Ghotbi, S., Sotoudeheian, S., Arhami, M.: Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmos. Environ. 141, 333–346 (2016). https://doi.org/10.1016/j.atmosenv.2016.06.057

    Article  Google Scholar 

  • Girolamo, L.D., Bond, T.C., Bramer, D., Diner, D.J., Fettinger, F., Kahn, R.A., Martonchik, J.V., Ramana, M.V., Ramanathan, V., Rasch, P.J.: Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys. Res. Lett. Atmos. Sci. 31, 1–5 (2004). https://doi.org/10.1029/2004GL021273

    Article  Google Scholar 

  • Goloub, P., Tanr, D., Deuz, J.L.: Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements. IEEE Trans. Geosci. Remote Sens. 37(3), 1586–1596 (1999). https://doi.org/10.1109/36.763270

    Article  Google Scholar 

  • Greed, G., Haywood, J.M., Milton, S., Keil, A., Christopher, S., Gupta, P., Highwood, E.J.: Aerosol optical depths over North Africa: 2. Modeling and model validation. J. Geophys. Res. 113, D00C05 (2008). https://doi.org/10.1029/2007jd009457

    Article  Google Scholar 

  • Green, M., Kondragunta, S., Ciren, P., Xu, C.: Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville, Illinois. J. Air Waste Manag. 59, 37–41 (2009). https://doi.org/10.3155/1047-3289.59.9.1082

    Article  Google Scholar 

  • Guo, J., Li, Y., Cohen, J. B., Li, J., Chen, D., Xu, H.,Liu, L., Yin, J., Hu, K., Zhai, P.: Shift in the temporal trend in boundary layer height trend in China using long‐term (1979–2016) radiosonde data. Geophysical Research Letters. (2019). https://doi.org/10.1029/2019GL082666.

  • Guo, J., Zhang, X.-y., Che, H., Gong, S., An, X., Cao, C., Guang, J., Zhang, H., Wang, Y., Zhang, X.-c., Xue, M., Li, X.: Correlation between PM concentrations and aerosol optical depth in eastern China. Atmos. Environ. 43, 5876–5886 (2009). https://doi.org/10.1016/j.atmosenv.2009.08.026

    Article  Google Scholar 

  • Guo, L.C., Zhang, Y., Lin, H., Zeng, W., Liu, T., Xiao, J., Rutherford, S., You, J., Ma, W. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environmental Pollution, 215, 195–202 (2016). https://doi.org/10.1016/j.envpol.2016.05.003.

  • Guo, Y., Feng, N., Christopher, S.A., Kang, P., Zhan, F.B., Hong, S.: Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS. Int. J. Remote Sens. 35, 6522–6544 (2014). https://doi.org/10.1080/01431161.2014.958245

    Article  Google Scholar 

  • Gupta, P. Particulate Matter Air Quality Assessment Over South East United States using Satellite and Ground Measurements. ProQuest Dissertations Publishing, 3338650. PhD Thesis. The University of Alabama in Huntsville, Alabama (2008).

  • Gupta, P., Christopher, S.A. An evaluation of Terra-MODIS sampling for monthly and annual particulate matter air quality assessment over the Southeastern United States. Atmos. Environ. 42, 6465–6471 (2008). https://doi.org/10.1016/j.atmosenv.2008.04.044

    Article  Google Scholar 

  • Gupta, P., Christopher, S.A.: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach. J. Geophys. Res. Atmos. 114, 1–13 (2009). https://doi.org/10.1029/2008JD011496

    Article  Google Scholar 

  • Gupta, P., Gadhavi, H., Jayaraman, A.: Aerosol optical depth variation observed using sun-photometer over Indore. Indian J. Radio Space Phys. 32, 229–237 (2003)

    Google Scholar 

  • Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y., Kumar, N.: Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40(30), 5880–5892 (2006). https://doi.org/10.1016/j.atmosenv.2006.03.016

    Article  Google Scholar 

  • Gupta, P., Khan, M.N., Silva, A., Patadia, F.: Atmospheric pollution quantity and quality of the data for air quality monitoring. Atmos. Pollut. Res. 4, 43–52 (2013). https://doi.org/10.5094/APR.2013.005

    Article  Google Scholar 

  • Gupta, P., Levy, R.C., Mattoo, S., Remer, L.A., Munchak, L.A.: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm 3293–3308. Atmos. Meas. Tech. 9, 3293–3308 (2016). https://doi.org/10.5194/amt-9-3293-2016

    Article  Google Scholar 

  • Gupta, P., Remer, L.A., Levy, R.C., Mattoo, S. Validation of MODIS 3km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos. Meas. Tech. 11, 3145–3159 (2018). https://doi.org/10.5194/amt-11-3145-2018

    Article  Google Scholar 

  • Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G.: A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENS and Sentinel-2 images. Remote Sens. 7(3), 2668–2691 (2015). https://doi.org/10.3390/rs70302668

    Article  Google Scholar 

  • Hauser, A., Oesch, D., Wunderle, S.: Retrieval of Aerosol Optical Depth (AOD) using NOAA AVHRR data in an Alpine Environment. Proc. SPIE 5235, Remote Sensing of Clouds and the Atmosphere VIII, (16 February 2004). https://doi.org/10.1117/12.511045.

  • Hauser, A., Oesch, D., Foppa, N., Wunderle, S.: NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res. Atmos. 110, 1–11 (2005). https://doi.org/10.1029/2004JD005439

    Article  Google Scholar 

  • He, Q., Zhang, M., Huang, B.: Spatio-temporal variation and impact factors analysis of satellite- based aerosol optical depth over China from 2002 to 2015. Atmos. Environ. 129, 79–90 (2016). https://doi.org/10.1016/j.atmosenv.2016.01.002

    Article  Google Scholar 

  • Herman, J.R.: Global distribution of UV-absorbing aerosols from Nimbus. J. Geophys. Res. Atmos. 102, 16911–16922 (1997)

    Article  Google Scholar 

  • Herman, J.R., Torres, O., Hsu, N.C., Herman, J.R., Holben, B.N., Tanre, D., Eck, T.F.: Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: results and applications comparisons of the TOMS aerosol index with sun-photometer aerosol optical thickness: results and applications. J. Geophys. Res. 104(D6), 6269–6279 (1999). https://doi.org/10.1029/1998JD200086

    Article  Google Scholar 

  • Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R.: Aerosol properties over bright reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42, 557–569 (2004)

    Article  Google Scholar 

  • Hsu, N.C., Jeong, M.-J., Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang, J., Tsay, S.-C.: Enhanced deep blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118(16), 9296–9315 (2013). https://doi.org/10.1002/jgrd.50712

    Article  Google Scholar 

  • Hsu, N.C., Lee, J., Sayer, A.M., Carletta, N., Tucker, C.J., Holben, B.N.: Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos. 122, 9968–9989 (2017). https://doi.org/10.1002/2017JD026932

    Article  Google Scholar 

  • Hoff, R. M., & Christopher, S. A.: Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? Journal of the Air & Waste Management Association, 59(6), 645–675 (2009). https://doi.org/10.3155/1047-3289.59.10.1130

  • Hu, X., Waller, L.A., Lyapustin, A., Wang, Y., Al-Hamdan, M.Z., Crosson, W.L., Liu, Y.: Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ. 140, 220–232 (2014)

    Article  Google Scholar 

  • Hu, X., Belle, J.H., Meng, X., Wildani, A., Waller, L.A., Strickland, M.J., Liu, Y.: Estimating PM2.5 concentrations in the conterminous United States Using the random forest approach. Environ. Sci. Technol. 51(12), 6936–6944 (2017). https://doi.org/10.1021/acs.est.7b01210

    Article  Google Scholar 

  • Huene, W.V.H., Freitag, M., Burrows, J.B.: Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res. 108(D9), 4260 (2003). https://doi.org/10.1029/2001JD002018

    Article  Google Scholar 

  • Jethva, H., Chand, D., Torres, O., Gupta, P., Lyapustin, A., Patadia, F., Goddard, N., Flight, S.: Agricultural burning and air quality over Northern India: a synergistic analysis using NASA’ s A-train satellite data and ground measurements. Aerosol Air Qual. Res. 18, 1756–1773 (2018). https://doi.org/10.4209/aaqr.2017.12.0583

    Article  Google Scholar 

  • Joharestani, Z. M., Cao, C., Bashir, B., Ni, X., Talebiesfandarani, S., 2019. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere. 10(7), 373. https://doi.org/10.3390/atmos10070373

    Article  Google Scholar 

  • Joo, H., Coull, B.A., Bell, M.L., Koutrakis, P.: Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 118, 8–15 (2012). https://doi.org/10.1016/j.envres.2012.06.011

    Article  Google Scholar 

  • Jung, C., Hwang, B., Chen, W.: Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ. Pollut. 237, 1000–1010 (2018). https://doi.org/10.1016/j.envpol.2017.11.016

    Article  Google Scholar 

  • Just, A.C., Wright, R.O., Schwartz, J., Coull, B.A., Baccarelli, A.A., Mar, M., Moody, E., Wang, Y., Lyapustin, A., Kloog, I.: Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environ. Sci. Technol. 49(14), 8576–8584 (2015). https://doi.org/10.1021/acs.est.5b00859

    Article  Google Scholar 

  • Kahn, R., Banerjee, P., Mcdonald, D., Diner, D.J.: Sensitivity of multiangle imaging to aerosol optical depth and to pure-particle size distribution and composition over ocean. J. Geophys. Res. 103(D24), 32195–32213 (1998)

    Article  Google Scholar 

  • Kaufman, Y.J., Tanre, D., Gordon, H.R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B.M., King, M.D., Teillet, P.M.: Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. Atmos. 102, 16815–16830 (1997)

    Article  Google Scholar 

  • Kloog, I., Koutrakis, P., Coull, B.A., Joo, H., Schwartz, J.: Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 45, 6267–6275 (2011). https://doi.org/10.1016/j.atmosenv.2011.08.066

    Article  Google Scholar 

  • Kloog, I., Nordio, F., Coull, B.A., Schwartz, J.: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic States. Environ. Sci. Technol. 46(21), 11913–11921 (2012). https://doi.org/10.1021/es302673e

    Article  Google Scholar 

  • Knapp, K., Haar, T., Kaufman, Y.: Aerosol optical depth retrieval from GOES-8: uncertainty study and retrieval validation over South America. J. Geophys. Res. 107(D7), 4055 (2002). https://doi.org/10.1029/2001JD000505

    Article  Google Scholar 

  • Koelemeijer, R.B.A.Ã., Homan, C.D., Matthijsen, J.: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 40(27), 5304–5315 (2006). https://doi.org/10.1016/j.atmosenv.2006.04.044

    Article  Google Scholar 

  • Kong, L., Xin, J., Zhang, W., Wang, Y.: The empirical correlations between PM 2. 5, PM 10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 216, 350–360 (2016). https://doi.org/10.1016/j.envpol.2016.05.085

    Article  Google Scholar 

  • Kumar, N., Chu, A., Foster, A.: An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 41(21), 4492–4503 (2007). https://doi.org/10.1016/j.atmosenv.2007.01.046

    Article  Google Scholar 

  • Kumar, N., Foster, D.A.: Air Quality Interventions and Spatial Dynamics of Air Pollution in Delhi. Int. J. Environ. Waste Manag. 4, 85–111 (2009). https://doi.org/10.1504/IJEWM.2009.026886

  • Lary, D.J., Lary, T., Sattler, B.: Using machine learning to estimate global PM2.5 for environmental health studies. Environ. Health Insights. 9(s1), (2020). https://doi.org/10.1177/EHI.S15664

  • Lee, H.J., Liu, Y., Coull, B.A., Schwartz, J., Koutrakis, P.: A novel calibration approach of MODIS AOD data to predict PM 2.5 concentrations. Atmos. Chem. Phys. 11(15), 7991–8002 (2011). https://doi.org/10.5194/acp-11-7991-2011

    Article  Google Scholar 

  • Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Hsu, N.C.: The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013). https://doi.org/10.5194/amtd-6-159-2013

    Article  Google Scholar 

  • Levy, R.C., Munchak, L.A., Mattoo, S., Patadia, F., Remer, L.A., Holz, R.E.: Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos. Meas. Tech. 8(10), 4083–4110 (2015). https://doi.org/10.5194/amt-8-4083-2015

    Article  Google Scholar 

  • Li, L.: A robust deep learning approach for spatiotemporal estimation of satellite AOD and PM2.5. Remote Sens. 12(2), 264 (2020). https://doi.org/10.3390/rs12020264

    Article  Google Scholar 

  • Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K., Wang, M., Laszlo, I., Nakajima, T.: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann. Geophys. 27, 2755–2770 (2009). https://doi.org/10.5194/angeo-27-2755-2009

    Article  Google Scholar 

  • Li, J., Carlson, B.E., Lacis, A.A.: How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 102, 260–273 (2015). https://doi.org/10.1016/j.atmosenv.2014.12.010

    Article  Google Scholar 

  • Li, Z., Roy, D.P., Zhang, H.K., Vermote, E.F., Huang, H.: Evaluation of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sens. 11(2), 122 (2019). https://doi.org/10.3390/rs11020122

    Article  Google Scholar 

  • Liang, F., Xiao, Q., Gu, D., Xu, M., Tian, L., Guo, Q., Wu, Z., Pan, X., Liu, Y.: Satellite-based short- and long-term exposure to PM2.5 and adult mortality in urban Beijing, China. Environ. Pollut. 242, 492–499 (2018). https://doi.org/10.1016/j.envpol.2018.06.097

    Article  Google Scholar 

  • Liaw, A., Wiener, M.: Classification and regression by random forest. R News. 2, 18–22 (2002)

    Google Scholar 

  • Lin, C., Li, Y., Yuan, Z., Lau, A.K.H., Li, C., Fung, J.C.H.: Remote Sensing of Environment Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 156, 117–128 (2015). https://doi.org/10.1016/j.rse.2014.09.015

    Article  Google Scholar 

  • Liu, Y.: New directions: satellite driven PM2.5 exposure models to support targeted particle pollution health effects research. Atmos. Environ. 68, 52–53 (2013). https://doi.org/10.1016/j.atmosenv.2012.11.043

    Article  Google Scholar 

  • Liu, Y., Park, R.J., Jacob, D.J., Li, Q., Kilaru, V., Sarnat, J.A.: Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous United States. J. Geophys. Res.: Atmos. 109(D22), (2004). https://doi.org/10.1029/2004JD005025

  • Liu, Y., Sarnat, J.A., Kilaru, V., Jacob, D.J., Koutrakis, P.: Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. Environ. Sci. Technol. 39, 3269–3278 (2005)

    Article  Google Scholar 

  • Martin, R.V.: Satellite remote sensing of surface air quality. Atmos. Environ. 42(34), 7823–7843 (2008). https://doi.org/10.1016/j.atmosenv.2008.07.018.

  • Mei, L.L., Xue, Y., Kokhanovsky, A.A., De Leeuw, G., Burrows, J.P.: Retrieval of aerosol optical depth over land surfaces from AVHRR data 2411–2420. Atmos. Meas. Tech. 7(8), 2411–2420 (2014). https://doi.org/10.5194/amt-7-2411-2014

    Article  Google Scholar 

  • Mei, L., Strandgren, J., Rozanov, V., Vountas, M., Burrows, J.P., Wang, Y.: A study of the impact of spatial resolution on the estimation of particle matter concentration from the aerosol optical depth retrieved from satellite observations. Int. J. Remote Sens. 40, 7084–7112 (2019). https://doi.org/10.1080/01431161.2019.1601279

    Article  Google Scholar 

  • Mirzaei, M., Bertazzon, S., Couloigner, I.: OLS and GWR LUR models of wildfire smoke using remote sensing and spatiotemporal data in Alberta. Spat Knowl Inf Can. 7(2), 3 (2018)

    Google Scholar 

  • Mishchenko, M.I., Geogdzhayev, I.V., Rossow, W.B., Cairns, B., Carlson, B.E., Lacis, A.A., Liu, L., Travis, L.D.: Long-term satellite record reveals likely recent aerosol trend. Sci. Sci. 315(5818), 1543–1543 (2007). https://doi.org/10.1126/science.1136709

    Article  Google Scholar 

  • Ni, X., Cao, C., Zhou, Y., Cui, X., Singh, R.P.: Spatio-temporal pattern estimation of PM2.5 in Beijing-Tianjin-Hebei region based on MODIS AOD and meteorological data using the back propagation neural network. Atmosphere. 9, 105 (2018). https://doi.org/10.3390/atmos9030105

    Article  Google Scholar 

  • Nordio, F., Kloog, I., Coull, B.A., Chudnovsky, A., Grillo, P., Alberto, P., Baccarelli, A.A., Schwartz, J.: Estimating spatio-temporal resolved PM 10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy, Italy. Atmos. Environ. 74, 227–236 (2013). https://doi.org/10.1016/j.atmosenv.2013.03.043

    Article  Google Scholar 

  • Othman, N., Mat-Jafri, M.Z., San, L.H.: Estimating particulate matter concentration over arid region using satellite remote sensing: a case study in Makkah, Saudi Arabia. Mod. Appl. Sci. 4, 11131–11142 (2010a)

    Article  Google Scholar 

  • Othman, N., Mat-Jafri, M.Z., San, L.H.: Estimating particulate matter concentration over arid region using satellite remote sensing: a case study in Makkah, Saudi Arabia. Mod. Appl. Sci. 4, 11–21 (2010b)

    Article  Google Scholar 

  • Paciorek, C., Liu, Y., Moreno-Macias, H., Kondragunta, S.: Spatio-temporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environ. Sci. Technol. 42, 5800–5806 (2008)

    Article  Google Scholar 

  • Park, S., Shin, M., Im, J., Song, C.-K., Choi, M., Kim, J., Lee, S., Park, R., Kim, J., Lee, D.-W., Kim, S.-K.: Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmos. Chem. Phys. 19(2), 1097–1113 (2019). https://doi.org/10.5194/acp-19-1097-2019

    Article  Google Scholar 

  • Park, S., Lee, J., Im, J., Song, C.-K., Choi, M., Kim, J., Lee, S., Park, R., Kim, S.-M., Yoon, J., Lee, D.-W., Quackenbush, L.J.: Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Sci. Total Environ. 713, 136516 (2020). https://doi.org/10.1016/j.scitotenv.2020.136516

    Article  Google Scholar 

  • Patadia, F., Levy, R.C., Mattoo, S.: Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation. Atmos. Meas. Tech. 11(6), 3205–3219 (2018). https://doi.org/10.5194/amt-11-3205-2018

    Article  Google Scholar 

  • Péré, J., Pont, V., Mallet, M., Bessagnet, B.: Mapping of PM10 surface concentrations derived from satellite observations of aerosol optical thickness over South-Eastern France. Atmos. Res. 91, 1–8 (2009). https://doi.org/10.1016/j.atmosres.2008.05.001

    Article  Google Scholar 

  • Prados, A.I., Kondragunta, S., Ciren, P., Knapp, K.R.: GOES Aerosol/Smoke Product (GASP) over North America: comparisons to AERONET and MODIS observations. J. Geophys. Res. 112(D15), (2007). https://doi.org/10.1029/2006JD007968

  • Prasad, S., Gupta, R.K.: Estimation and evaluation of aerosol optical depth using NOAA AVHRR data. Adv. Space Res. 22(11), 1525–1528 (1999). https://doi.org/10.1016/S0273-1177(99)00020-4

    Article  Google Scholar 

  • Prasad, A.K., Singh, R.P.: Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens. Environ. 107(1–2), 109–119 (2007). https://doi.org/10.1016/j.rse.2006.09.026

    Article  Google Scholar 

  • Prasad, K., Ellicott, E., Badarinath, K.V.S., Vermote, E.: MODIS derived fi re characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 159, 1560–1569 (2011). https://doi.org/10.1016/j.envpol.2011.03.001

    Article  Google Scholar 

  • Ranjan, A. K., Patra, A. K., Gorai, A. K.: Effect of lockdown due to SARS COVID-19 on aerosol optical depth (AOD) over urban and mining regions in India. Science of The Total Environment, 745, 141024 (2020). https://doi.org/10.1016/j.scitotenv.2020.141024.

  • Ramachandran, G., Adgate, J.L., Pratt, G.C., Sexton, K.: Characterizing indoor and outdoor 15 min average PM2.5 concentrations in urban neighborhoods. Aerosol Sci. Technol. 37, 33–45 (2003)

    Article  Google Scholar 

  • Reid, C.E., Jerrett, M., Petersen, M.L., Pfister, G.G., Morefield, P.E., Tager, I.B., Raffuse, S.M., Balmes, J.R.: Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning. Environ. Sci. Technol. 49(6), 3887–3896 (2015). https://doi.org/10.1021/es505846r

    Article  Google Scholar 

  • Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A.: MODIS 3-km aerosol product: algorithm and global perspective. Atmos. Meas. Tech. 6(7), 1829–1844 (2013). https://doi.org/10.5194/amt-6-1829-2013

    Article  Google Scholar 

  • Rosenfeld, D., Lohmann, U., Raga, G.B., O’Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., Andreae, M.O.: Flood or drought: how do aerosols affect precipitation? Science. 321(5894), 1309–1313 (2008). https://doi.org/10.1126/science.1160606

    Article  Google Scholar 

  • Roy, A., Jivani, A., Parekh, B.: Estimation of PM10 distribution using Landsat 7 ETM+ remote sensing data. Int. J. Adv. Remote Sens. GIS. 6(1), 2246–2252 (2017). https://doi.org/10.23953/cloud.ijarsg.284

    Article  Google Scholar 

  • Saleh, S.H.A., Hasan, G.: Estimation of PM10 concentration using ground measurements and Landsat 8 OLI satellite image. J. Geophys. Remote Sens. 3(2), 120 (2014). https://doi.org/10.4172/2169-0049.100012

    Article  Google Scholar 

  • Saraswat, I., Mishra, R.K., Kumar, A.: Remote sensing applications: society and environment estimation of PM10 concentration from Landsat 8 OLI satellite imagery over. Remote Sens. Appl.: Soc. Environ. 8, 251–257 (2017). https://doi.org/10.1016/j.rsase.2017.10.006

    Article  Google Scholar 

  • Schaap, M., Timmermans, R.M.A., Koelemeijer, R.B.A.: Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ. 42(9), 2187–2197 (2008). https://doi.org/10.1016/j.atmosenv.2007.11.044

    Article  Google Scholar 

  • Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., De Leeuw, G.: Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 9, 909–925 (2009)

    Article  Google Scholar 

  • Shaw, N., Gorai, A.K.: Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration. Environ. Dev. Sustain. 22, 265–279 (2020). https://doi.org/10.1007/s10668-018-0198-8

    Article  Google Scholar 

  • Shin, M., Kang, Y., Park, S., Im, J., Yoo, C., Quackenbush, L.J.: Estimating ground-level particulate matter concentrations using satellite-based data: a review. GISci. Remote Sens. 57(2), 174–189 (2020). https://doi.org/10.1080/15481603.2019.1703288

    Article  Google Scholar 

  • Sinha, P.R., Gupta, P., Kaskaoutis, D.G., Sahu, L.K., Nagendra, N., Manchanda, R.K., Kumar, Y.B., Sreenivasan, S.: Estimation of particulate matter from satellite- and ground-based observations over Hyderabad, India. Int. J. Remote Sens. 36, 6192–6213 (2015). https://doi.org/10.1080/01431161.2015.1112929

    Article  Google Scholar 

  • Sorek-hamer, M., Strawa, A.W., Chat, R.B., Esswein, R., Cohen, A., Broday, D.M.: Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environ. Pollut. 182, 417–423 (2013). https://doi.org/10.1016/j.envpol.2013.08.002

    Article  Google Scholar 

  • Sowden, M., Mueller, U., Blake, D.: Review of surface particulate monitoring of dust events using geostationary satellite remote sensing. Atmos. Environ. 183, 154–164 (2018). https://doi.org/10.1016/j.atmosenv.2018.04.020

    Article  Google Scholar 

  • Srivastava, P., Dey, S., Agarwal, P., Basil, G.: Aerosol characteristics over Delhi national capital region: a satellite view. Int. J. Remote Sens. 35, 5036–5052 (2014). https://doi.org/10.1080/01431161.2014.934404

    Article  Google Scholar 

  • Srivastava, A., Saran, S.: Comprehensive study on AOD trends over the Indian subcontinent: a statistical approach. Int. J. Remote Sens. 38, 5127–5149 (2017). https://doi.org/10.1080/01431161.2017.1323284

  • Tiwari, S., Srivastava, A.K., Bisht, D.S., Bano, T., Singh, S., Behura, S., Srivastava, M.K., Chate, D.M., Padmanabhamurty, B.: Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J. Atmos. Chem. 62, 193–209 (2009). https://doi.org/10.1007/s10874-010-9148-z

    Article  Google Scholar 

  • Torres, O., Bhartia, P.K., Herman, J.R., Sinyuk, A., Ginoux, P., Holben, B.: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 59, 398–413 (2002)

    Article  Google Scholar 

  • Twomey, S., 1997. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34(7), 1149–1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2

    Article  Google Scholar 

  • Van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C.: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ. Health Perspect. 118(6), 847–855 (2010). https://doi.org/10.1289/ehp.0901623

    Article  Google Scholar 

  • Veihelmann, B., Levelt, P.F., Stammes, P., Veefkind, J.P.: Simulation study of the aerosol information content in OMI spectral reflectance measurements. Atmos. Chem. Phys. 7, 3115–3127 (2007). https://doi.org/10.5194/acp-7-3115-2007

    Article  Google Scholar 

  • Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., Morcette, J.-J.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35(3), 675–686 (1997). https://doi.org/10.1109/36.581987

    Article  Google Scholar 

  • Vidot, J., Santer, R., Ramon, D.: Atmospheric particulate matter (PM) estimation from SeaWiFS imagery. J. Geophys. Res. 112(D6), (2010). https://doi.org/10.1029/2005JD006737

  • Wallace, J., Kanaroglou, P.: An investigation of air pollution in southern Ontario, Canada, with MODIS and MISR aerosol data. IEEE Int. Geosci. Remote Sens. Symp. (2007). https://doi.org/10.1109/igarss.2007.4423805

  • Wang, J., Christopher, S.A.: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys. Res. Lett. 30(21), 2095 (2003). https://doi.org/10.1029/2003gl018174

    Article  Google Scholar 

  • Wang, J., Xu, X., Spurr, R., Wang, Y., Drury, E.: Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: implications for air quality monitoring in China. Remote Sens. Environ. 114, 2575–2583 (2010). https://doi.org/10.1016/j.rse.2010.05.034

    Article  Google Scholar 

  • Weber, S. A., Engel-Cox, J. A., Hoff, R. M., Prados, A. I., Zhang, H.: An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth. Journal of the Air & Waste Management Association, 60(5), 574–585 (2010). https://doi.org/10.3155/1047-3289.60.5.574.

  • Weber, S.A., Insaf, T.Z., Hall, E.S., Talbot, T.O., Huff, A.K.: Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates. Environ. Res. 151, 399–409 (2016). https://doi.org/10.1016/j.envres.2016.07.012

    Article  Google Scholar 

  • Wei, J., Huang, B., Sun, L., Zhang, Z., Wang, L., Bilal, M.: A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces. J. Geophys. Res. Atmos. 122, 13338–13355 (2017). https://doi.org/10.1002/2017JD026922

    Article  Google Scholar 

  • Weizhen, H., Zhengqiang, L., Yuhuan, Z., Hua, X., Ying, Z., Kaitao, L., Donghui, L., Peng, W., Yan, M.: Using support vector regression to predict PM10 and PM2.5. IOP Conf. Ser.: Earth Environ. Sci. 17, 012268 (2014). https://doi.org/10.1088/1755-1315/17/1/012268

    Article  Google Scholar 

  • World Health Organization (WHO) (2020). Air Pollution. (https://www.who.int/airpollution/en/). Accessed 7 Jan 2020

  • Wu, Y., Guo, J., Zhang, X., Tian, X., Zhang, J.: Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Sci. Total Environ. 433, 20–30 (2012). https://doi.org/10.1016/j.scitotenv.2012.06.033

    Article  Google Scholar 

  • Wu, X., Wang, Y., He, S., Wu, Z.: PM2:5/PM10 ratio prediction based on a long short-term memory neural network in Wuhan, China. Geosci. Model Dev. 13(3), 1499–1511 (2020). https://doi.org/10.5194/gmd-13-1499-2020

    Article  Google Scholar 

  • Xin, J., Zhang, Q., Wang, L., Gong, C., Wang, Y., Liu, Z., Gao, W.: The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos. Res. 138, 179–188 (2014). https://doi.org/10.1016/j.atmosres.2013.11.001

    Article  Google Scholar 

  • Xu, Y., Ho, H.C., Wong, M.S., Deng, C., Shi, Y., Chan, T.-C., Knudby, A.: Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 242, 1417–1426 (2018). https://doi.org/10.1016/j.envpol.2018.08.029

    Article  Google Scholar 

  • Xue, Y., He, X., Leeuw, G.D., Mei, L., Che, Y., Rippin, W.: Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sens. Environ. 198, 471–489 (2017). https://doi.org/10.1016/j.rse.2017.06.036

    Article  Google Scholar 

  • Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., Zhang, Q.: Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ. Int. 123, 345–357 (2019). https://doi.org/10.1016/j.envint.2018.11.075

    Article  Google Scholar 

  • Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H.: The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: about and behind the spatio-temporal variations. Environ. Pollut. 248, 526–535 (2019). https://doi.org/10.1016/j.envpol.2019.02.071

    Article  Google Scholar 

  • Yao, F., Si, M., Li, W., Wu, J.: Science of the total environment a multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Sci. Total Environ. 15(618), 819–828 (2017). https://doi.org/10.1016/j.scitotenv.2017.08.209

    Article  Google Scholar 

  • Yap, X.Q., Hashim, M.: A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 13, 3517–3526 (2013). https://doi.org/10.5194/acpd-12-31483-2012

    Article  Google Scholar 

  • You, W., Zang, Z., Pan, X., Zhang, L., Chen, D.: Estimating PM2.5 in Xian, China using aerosol optical depth: a comparison between the MODIS and MISR retrieval models. Sci. Total Environ. 505, 1156–1165 (2014). https://doi.org/10.1016/j.scitotenv.2014.11.024

    Article  Google Scholar 

  • You, W., Zang, Z., Zhang, L., Zhang, M., Pan, X., Li, Y., 2016a. A nonlinear model for estimating ground-level PM10 concentration in Xi’an using MODIS aerosol optical depth retrieval. Atmos. Res. 168, 169–179. https://doi.org/10.1016/j.atmosres.2015.09.008

    Article  Google Scholar 

  • You, W., Zang, Z., Zhang, L., Li, Y., Wang, W., 2016b. Estimating national-scale ground-level PM2.5 concentrations in China using geographically weighted regression based on MODIS and MISR AOD. Environ. Sci. Pollut. Res. 23(9), 8327–8338. https://doi.org/10.1007/s11356-015-6027-9

    Article  Google Scholar 

  • Zeeshan, M., Oanh, N.T.K.: Science of the total environment assessment of the relationship between satellite AOD and ground PM 10 measurement data considering synoptic meteorological patterns and LIDAR data. Sci. Total Environ. 474, 609–618 (2014)

    Article  Google Scholar 

  • Zhan, Y., Luo, Y., Deng, X., Chen, H., Grieneisen, M.L., Shen, X., Zhu, L., Zhang, M.: Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 155, 129–139 (2017). https://doi.org/10.1016/j.atmosenv.2017.02.023

    Article  Google Scholar 

  • Zhang, Y., Li, Z.: Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 160, 252–262 (2015). https://doi.org/10.1016/j.rse.2015.02.005

    Article  Google Scholar 

  • Zhang, H., Hoff, R.M., Engel-cox, J.A., Zhang, H., Hoff, R.M., Engel-cox, J.A.: The relation between moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U. S. environmental protection agency regions. J. Air Waste Manag. 59(11), 1358–1369 (2009). https://doi.org/10.3155/1047-3289.59.11.1358.

    Article  Google Scholar 

  • Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A.: Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 60, 632–655 (2012). https://doi.org/10.1016/j.atmosenv.2012.06.031

    Article  Google Scholar 

  • Zhang, R., Di, B., Luo, Y., Deng, X., Grieneisen, M.L., Wang, Z., Yao, G., Zhan, Y.: A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels. Environ. Pollut. 243, 998–1007 (2018a). https://doi.org/10.1016/j.envpol.2018.09.052

    Article  Google Scholar 

  • Zhang, G., Rui, X., Fan, Y.: Critical review of methods to estimate PM2.5 concentrations within specified research region. ISPRS Int. J. Geo-Inf. 7(9), 368 (2018b). https://doi.org/10.3390/ijgi7090368

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely thanks to all the anonymous reviewers and responsible editor for their insightful review and giving constructive comments which have certainly enhanced the overall quality of the manuscript. Authors also sincerely acknowledge the articles which have been used in this review paper.

Funding

This research was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, grant no. 24(0352)/18/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gorai.

Ethics declarations

Conflict of interest

Authors declare no potential conflict of interest.

Additional information

Responsible Editor: Chang-Keun Song.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A.K., Patra, A. & Gorai, A.K. A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges. Asia-Pacific J Atmos Sci 57, 679–699 (2021). https://doi.org/10.1007/s13143-020-00215-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00215-0

Keywords