Diurnal Characteristics of Summer Precipitation Over Luzon Island, Philippines

Abstract

A network of 411 ground stations across Luzon Island, Philippines (12.5–20° N, 119–126.5° E) was used to characterize the diurnal cycles of summer precipitation, in terms of amount (PA), frequency (PF), and intensity (PI), during the southwest monsoon season (SWM; May–September) between 2011 and 2018. In addition to monsoon exposure, the effect of topography on the diurnal cycle of precipitation also was investigated by comparing a valley, plain, west- and east-facing coasts near mountains. Results show that monsoon exposure significantly influenced diurnal precipitation such that PA and PF decreased (PI increased) toward the leeward side of Luzon Island. Most topographies showed late afternoon-early evening peaks; however, the east-facing coast exhibited a late night-early morning peak. Orographic effects led to a high PA over mountains and enhanced the spatiotemporal propagation of PA in monsoon-exposed areas. The first (second) half of the diurnal peak exhibited high PI/low PF (low PI/high PF), suggesting both PI and PF are important indicators of PA. Finally, graded analysis revealed that light precipitation (0.01–2.5 mm h−1) captured overall precipitation trends across Luzon Island, highlighting the importance of this intensity of precipitation. Heavy precipitation (2.5–7.5 mm h−1) peaked in the morning; however, underlying mechanisms remain unknown. The study presents the first examination of the diurnal precipitation cycle in Luzon Island using a dense network of synoptic stations. The study demonstrates the complex effect of topography on precipitation and the importance of the SWM in the diurnal cycle of precipitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akasaka, I.: Interannual variations in seasonal march of rainfall in the Philippines. Int. J. Climatol. 30, 1301–1314 (2010). https://doi.org/10.1002/joc.1975

    Article  Google Scholar 

  2. Akasaka, I., Morishima, W., Mikami, T.: Seasonal march and its spatial difference of rainfall in the Philippines. Int. J. Climatol. 27, 715–725 (2007). https://doi.org/10.1002/joc.1428

    Article  Google Scholar 

  3. Betts, A.K., Jakob, C.: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res. Atmospheres. 107, ACL 25-1–ACL 25-13 (2002). https://doi.org/10.1029/2002JD002264

    Article  Google Scholar 

  4. Biasutti, M., Yuter, S.E., Burleyson, C.D., Sobel, A.H.: Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim. Dyn. 39, 239–258 (2012). https://doi.org/10.1007/s00382-011-1146-6

    Article  Google Scholar 

  5. Cayanan, E.O., Chen, T.-C., Argete, J.C., Yen, M.-C., Nilo, P.D.: The effect of tropical cyclones on southwest monsoon rainfall in the Philippines. J. Meteorol. Soc. Jpn. 89A, 123–139 (2011). https://doi.org/10.2151/jmsj.2011-A08

    Article  Google Scholar 

  6. Chang, C.-P., Wang, Z., McBride, J., Liu, C.-H.: Annual cycle of Southeast Asia—maritime continent rainfall and the asymmetric monsoon transition. J. Clim. 18, 287–301 (2005). https://doi.org/10.1175/JCLI-3257.1

    Article  Google Scholar 

  7. Chen, F.-W., Liu, C.-W.: Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 10, 209–222 (2012). https://doi.org/10.1007/s10333-012-0319-1

    Article  Google Scholar 

  8. Coronas, J.: The Climate and Weather of the Philippines, 1903–1918. Bureau of Printing, Manila, Philippines (1920)

    Google Scholar 

  9. Cruz, F.T., Narisma, G.T., Villafuerte, M.Q., Cheng Chua, K.U., Olaguera, L.M.: A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmospheric Res. 122, 609–616 (2013). https://doi.org/10.1016/j.atmosres.2012.06.010

    Article  Google Scholar 

  10. Dai, A.: Global precipitation and thunderstorm frequencies. Part I: seasonal and interannual variations. J. Clim. 14, 20 (2001a)

  11. Dai, A.: Global precipitation and thunderstorm frequencies. Part II: diurnal variations. J. Clim. 14, 17 (2001b)

    Google Scholar 

  12. Dai, A., Lin, X., Hsu, K.-L.: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim. Dyn. 29, 727–744 (2007). https://doi.org/10.1007/s00382-007-0260-y

    Article  Google Scholar 

  13. DeMott, C.A., Randall, D.A., Khairoutdinov, M.: Convective precipitation variability as a tool for general circulation model analysis. J. Clim. 20, 91–112 (2007). https://doi.org/10.1175/JCLI3991.1

    Article  Google Scholar 

  14. Flores, J.F., Balagot, V.F.: Climate of the Philippines. World Surv. Climatol. 8, 159–213 (1969)

    Google Scholar 

  15. Fujibe, F.: Diurnal variation in the frequency of heavy precipitation in Japan. J. Meteorol. Soc. Jpn. Ser II. 77, 1137–1149 (1999). https://doi.org/10.2151/jmsj1965.77.6_1137

    Article  Google Scholar 

  16. Hersbach, H., Bell, W., Berrisford, P., Horányi, A., J., M.-S., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., Dee, D., Dee, D.: Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 159, 17–24 (2019). https://doi.org/10.21957/vf291hehd7

    Article  Google Scholar 

  17. Hirose, M.: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM precipitation radar. J. Geophys. Res. 110, D05106 (2005). https://doi.org/10.1029/2004JD004815

    Article  Google Scholar 

  18. Jamandre, C.A., Narisma, G.T.: Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmospheric Res. 122, 599–608 (2013). https://doi.org/10.1016/j.atmosres.2012.06.024

    Article  Google Scholar 

  19. Johnson, R.H.: Diurnal cycle of monsoon convection. In: In: Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R.H., Wang, B., and Yasunari, T. (eds.) World Scientific Series on Asia-Pacific Weather and Climate, pp. 257–276. World Scientific (2011)

  20. Kubota, H., Shirooka, R., Matsumoto, J., Cayanan, E.O., Hilario, F.D.: Tropical cyclone influence on the long-term variability of Philippine summer monsoon onset. Prog. Earth Planet. Sci. 4, 27 (2017). https://doi.org/10.1186/s40645-017-0138-5

    Article  Google Scholar 

  21. Maggioni, V., Meyers, P.C., Robinson, M.D.: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeorol. 17, 1101–1117 (2016). https://doi.org/10.1175/JHM-D-15-0190.1

  22. Mahmud, M.R., Hashim, M., Reba, M.N.M.: How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia? Asia-Pac. J. Atmospheric Sci. 53, 375–384 (2017). https://doi.org/10.1007/s13143-017-0042-3

    Article  Google Scholar 

  23. Matsumoto, J., Olaguera, L.M.P., Nguyen-Le, D., Kubota, H., Villafuerte, M.Q.: Climatological seasonal changes of wind and rainfall in the Philippines. Int. J. Climatol. joc.6492 (2020). https://doi.org/10.1002/joc.6492

  24. Minamide, M., Yoshimura, K.: Orographic effect on the precipitation with typhoon Washi in the Mindanao Island of the Philippines. SOLA. 10, 67–71 (2014). https://doi.org/10.2151/sola.2014-014

    Article  Google Scholar 

  25. Mori, S., Jun-Ichi, H., Tauhid, Y.I., Yamanaka, M.D., Okamoto, N., Murata, F., Sakurai, N., Hashiguchi, H., Sribimawati, T.: Diurnal Land–Sea rainfall peak migration over Sumatera Island, Indonesian maritime continent, observed by TRMM satellite and intensive Rawinsonde soundings. Mon. Weather Rev. 132, 19 (2004)

    Article  Google Scholar 

  26. Moron, V., Lucero, A., Hilario, F., Lyon, B., Robertson, A.W., DeWitt, D.: Spatio-temporal variability and predictability of summer monsoon onset over the Philippines. Clim. Dyn. 33, 1159–1177 (2009). https://doi.org/10.1007/s00382-008-0520-5

    Article  Google Scholar 

  27. Ohsawa, T., Ueda, H., Hayashi, T., Watanabe, A., Matsumoto, J.: Diurnal variations of convective activity and rainfall in tropical Asia. J. Meteorol. Soc. Jpn. Ser II. 79, 333–352 (2001). https://doi.org/10.2151/jmsj.79.333

    Article  Google Scholar 

  28. Oki, T., Musiake, K.: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteorol. 33, 1445–1463 (1994). https://doi.org/10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2

    Article  Google Scholar 

  29. Olaguera, L.M.P., Matsumoto, J.: A climatological study of the wet and dry conditions in the pre-summer monsoon season of the Philippines. Int. J. Climatol. 40(9), 4203–4217 (2019). https://doi.org/10.1002/joc.6452

  30. Olaguera, L., Matsumoto, J., Kubota, H., Inoue, T., Cayanan, E., Hilario, F.: Abrupt climate shift in the mature rainy season of the Philippines in the mid-1990s. Atmosphere. 9, 350 (2018a). https://doi.org/10.3390/atmos9090350

    Article  Google Scholar 

  31. Olaguera, L.M., Matsumoto, J., Kubota, H., Inoue, T., Cayanan, E.O., Hilario, F.D.: Interdecadal shifts in the winter monsoon rainfall of the Philippines. Atmosphere. 9, 464 (2018b). https://doi.org/10.3390/atmos9120464

    Article  Google Scholar 

  32. Park, M.-S., Ho, C.-H., Kim, J., Elsberry, R.L.: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts. Clim. Dyn. 37, 1483–1499 (2011). https://doi.org/10.1007/s00382-010-0922-z

    Article  Google Scholar 

  33. Peralta, J.C.A.C., Narisma, G.T.T., Cruz, F.A.T.: Validation of satellite and ground station-based high-resolution rainfall gridded datasets over the Philippines. J. Hydrometeorol. 21(7), 1571–1587 (2020). https://doi.org/10.1175/JHM-D-19-0276.1

  34. Pullen, J., Gordon, A.L., Flatau, M., Doyle, J.D., Villanoy, C., Cabrera, O.: Multiscale influences on extreme winter rainfall in the Philippines. J. Geophys. Res. Atmospheres. 120, 3292–3309 (2015). https://doi.org/10.1002/2014JD022645

    Article  Google Scholar 

  35. Qian, J.-H.: Why precipitation is mostly concentrated over islands in the maritime continent. J. Atmos. Sci. 65, 1428–1441 (2008). https://doi.org/10.1175/2007JAS2422.1

    Article  Google Scholar 

  36. Qian, T., Dai, A., Trenberth, K.E., Oleson, K.W.: Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data and evaluations. J. Hydrometeorol. 7, 953–975 (2006). https://doi.org/10.1175/JHM540.1

    Article  Google Scholar 

  37. Qian, J.-H., Robertson, A.W., Moron, V.: Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J. Atmospheric Sci. 67, 3509–3524 (2010). https://doi.org/10.1175/2010JAS3348.1

    Article  Google Scholar 

  38. Reiter, E., Tang, M.: Plateau effects on diurnal circulation patterns. Mon. Weather Rev. 112, 638–651 (1984). https://doi.org/10.1175/1520-0493(1984)112<0638:PEODCP>2.0.CO;2

    Article  Google Scholar 

  39. Riley Dellaripa, E.M., Maloney, E.D., Toms, B.A., Saleeby, S.M., van den Heever, S.C.: Topographic effects on the Luzon diurnal cycle during the BSISO. J. Atmos. Sci. 77, 3–30 (2020). https://doi.org/10.1175/JAS-D-19-0046.1

    Article  Google Scholar 

  40. Saito, K., Keenan, T., Holland, G., Puri, K.: Numerical simulation of the diurnal evolution of Tropical Island convection over the maritime continent. Mon. Weather Rev. 129, 23 (2001)

    Google Scholar 

  41. Sakurai, N., Kawashima, M., Fujiyoshi, Y., Hashiguchi, H., Shimomai, T., Mori, S., Jun-Ichi, H., Murata, F., Yamanaka, M.D., Tauhid, Y.I., Sribimawati, T., Suhardi, B.: Internal structures of migratory cloud systems with diurnal cycle over Sumatera Island during CPEA-I campaign. J. Meteorol. Soc. Jpn. 87, 157–170 (2009). https://doi.org/10.2151/jmsj.87.157

    Article  Google Scholar 

  42. Sakurai, N., Mori, S., Kawashima, M., Fujiyoshi, Y., Hamada, J.-I., Shimizu, S., Fudeyasu, H., Tabata, Y., Harjupa, W., Hashiguchi, H., Yamanaka, M.D., Matsumoto, J., Emrizal, Syamsudin, F.: Migration process and 3D wind field of precipitation systems associated with a diurnal cycle in West Sumatera: dual doppler radar analysis during the HARIMAU2006 campaign. J. Meteorol. Soc. Jpn. 89, 341–361 (2011). https://doi.org/10.2151/jmsj.2011-404

    Article  Google Scholar 

  43. Sakurai, N., Murata, F., Yamanaka, M.D., Mori, S., Hamada, J.-I., Hashiguchi, H., Tauhid, Y.I., Sribimawati, T., Suhardi, B.: Diurnal cycle of cloud system migration over Sumatera Island. J. Meteorol. Soc. Jpn. 83, 835–850 (2005). https://doi.org/10.2151/jmsj.83.835

    Article  Google Scholar 

  44. Satomura, T.: Diurnal variation of precipitation over the Indo-China peninsula. J. Meteorol. Soc. Jpn. 78, 461–475 (2000). https://doi.org/10.2151/jmsj1965.78.4_461

    Article  Google Scholar 

  45. Shibagaki, Y., Shimomai, T., Kozu, T., Mori, S., Fujiyoshi, Y., Hashiguchi, H., Yamamoto, M.K., Fukao, S., Yamanaka, M.D.: Multiscale aspects of convective systems associated with an Intraseasonal oscillation over the Indonesian maritime continent. Mon. Weather Rev. 134, 1682–1696 (2006). https://doi.org/10.1175/MWR3152.1

    Article  Google Scholar 

  46. Sun, Y., Solomon, S., Dai, A., Portmann, R.W.: How often does it rain? J. Clim. 19, 916–934 (2006). https://doi.org/10.1175/JCLI3672.1

  47. Sun, Y., Solomon, S., Dai, A., Portmann, R.W.: How often will it rain? J. Clim. 20, 4801–4818 (2007). https://doi.org/10.1175/JCLI4263.1

  48. Takahashi, H.G.: Seasonal changes in diurnal rainfall cycle over and around the Indochina peninsula observed by TRMM-PR. Adv. Geosci. 25, 23–28 (2010). https://doi.org/10.5194/adgeo-25-23-2010

    Article  Google Scholar 

  49. Takahashi, H.G.: Seasonal and diurnal variations in rainfall characteristics over the tropical Asian monsoon region using TRMM-PR data. SOLA. 12A, 22–27 (2016). https://doi.org/10.2151/sola.12A-005

    Article  Google Scholar 

  50. Takahashi, H.G., Polcher, J.: Weakening of rainfall intensity on wet soils over the wet Asian monsoon region using a high-resolution regional climate model. Prog. Earth Planet. Sci. 6, 26 (2019). https://doi.org/10.1186/s40645-019-0272-3

    Article  Google Scholar 

  51. Trenberth, K.E., Dai, A., Rasmussen, R.M., Parsons, D.B.: The changing character of precipitation. Bull. Amer. Meteor. Soc. 84, 1205–1218 (2003). https://doi.org/10.1175/BAMS-84-9-1205

  52. Tsujimoto, K., Ohta, T., Aida, K., Tamakawa, K., So Im, M.: Diurnal pattern of rainfall in Cambodia: its regional characteristics and local circulation. Prog. Earth Planet. Sci. 5, 39 (2018). https://doi.org/10.1186/s40645-018-0192-7

    Article  Google Scholar 

  53. Villafuerte, M.Q., Matsumoto, J., Akasaka, I., Takahashi, H.G., Kubota, H., Cinco, T.A.: Long-term trends and variability of rainfall extremes in the Philippines. Atmospheric Res. 137, 1–13 (2014). https://doi.org/10.1016/j.atmosres.2013.09.021

    Article  Google Scholar 

  54. Xie, S.-P., Xu, H., Saji, N.H., Wang, Y., Liu, W.T.: Role of narrow mountains in large-scale organization of Asian monsoon convection*. J. Clim. 19, 3420–3429 (2006). https://doi.org/10.1175/JCLI3777.1

    Article  Google Scholar 

  55. Xin-Xin, Z., Xun-Qiang, B., Xiang-Hui, K.: Observed diurnal cycle of summer precipitation over South Asia and East Asia based on CMORPH and TRMM satellite data. Atmospheric Ocean. Sci. Lett. 8, 201–207 (2015). https://doi.org/10.1080/16742834.2015.11447260

    Article  Google Scholar 

  56. Yamanaka, M.D.: Physical climatology of Indonesian maritime continent: an outline to comprehend observational studies. Atmospheric Res. 178–179, 231–259 (2016). https://doi.org/10.1016/j.atmosres.2016.03.017

    Article  Google Scholar 

  57. Yamanaka, M.D., Ogino, S.-Y., Wu, P.-M., Jun-Ichi, H., Mori, S., Matsumoto, J., Syamsudin, F.: Maritime continent coastlines controlling Earth’s climate. Prog. Earth Planet. Sci. 5, 21 (2018). https://doi.org/10.1186/s40645-018-0174-9

    Article  Google Scholar 

  58. Yang, G.-Y., Slingo, J.: The diurnal cycle in the tropics. Mon. Weather Rev. 129, 18 (2001)

    Google Scholar 

  59. Yin, S., Chen, D., Xie, Y.: Diurnal variations of precipitation during the warm season over China. Int. J. Climatol. 29, 1154–1170 (2009). https://doi.org/10.1002/joc.1758

    Article  Google Scholar 

  60. Yokoi, S., Satomura, T., Matsumoto, J.: Climatological characteristics of the Intraseasonal variation of precipitation over the Indochina peninsula. J. Clim. 20, 5301–5315 (2007). https://doi.org/10.1175/2007JCLI1357.1

    Article  Google Scholar 

  61. Yu, R., Zhou, T., Xiong, A., Zhu, Y., Li, J.: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 34, L01704 (2007). https://doi.org/10.1029/2006GL028129

    Article  Google Scholar 

  62. Yuan, W., Yu, R., Chen, H., Li, J., Zhang, M.: Subseasonal characteristics of diurnal variation in summer monsoon rainfall over Central Eastern China. J. Clim. 23, 6684–6695 (2010). https://doi.org/10.1175/2010JCLI3805.1

    Article  Google Scholar 

  63. Zhang, W., Huang, A., Zhou, Y., Yang, B., Fang, D., Zhang, L., Wu, Y.: Diurnal cycle of precipitation over Fujian Province during the pre-summer rainy season in southern China. Theor. Appl. Climatol. 130, 993–1006 (2017). https://doi.org/10.1007/s00704-016-1927-2

    Article  Google Scholar 

  64. Zhou, T., Yu, R., Chen, H., Dai, A., Pan, Y.: Summer precipitation frequency, intensity, and diurnal cycle over China: a comparison of satellite data with rain gauge observations. J. Clim. 21, 3997–4010 (2008). https://doi.org/10.1175/2008JCLI2028.1

    Article  Google Scholar 

  65. Zhuo, H., Zhao, P., Zhou, T.: Diurnal cycle of summer rainfall in Shandong of eastern China. Int. J. Climatol. 34, 742–750 (2014). https://doi.org/10.1002/joc.3718

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the constructive comments from the editor and anonymous reviewers in further improving this manuscript. The authors would like to thank Mr. Emilio Gozo of the Manila Observatory for preparing the Weather Philippines Foundation data set. This research was done during the internship of Miguel Hilario at Tokyo Metropolitan University in 2018 and was supported by the Japan Student Services Organization.

Author information

Affiliations

Authors

Contributions

MRAH performed the analysis and prepared the manuscript. LMO, GTN, JM supervised the analysis and provided input for the manuscript.

Corresponding author

Correspondence to Lyndon Mark Olaguera.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Edvin Aldrian, Ph.D..

Electronic supplementary material

ESM 1

(PDF 1033 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hilario, M.R.A., Olaguera, L.M., Narisma, G.T. et al. Diurnal Characteristics of Summer Precipitation Over Luzon Island, Philippines. Asia-Pacific J Atmos Sci 57, 573–585 (2021). https://doi.org/10.1007/s13143-020-00214-1

Download citation

Keywords

  • Philippines
  • Diurnal precipitation
  • Summer precipitation
  • Monsoons
  • Topography
  • Precipitation amount
  • Precipitation frequency
  • Precipitation intensity