Skip to main content
Log in

Intensity Change of NORU (2017) During Binary Tropical Cyclones Interaction

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the intensity change of tropical cyclone (TC) Noru (1705) is investigated by using numerical simulations. TC Noru experienced a weakening stage during the binary interaction with TC Kulap (1706). In the presence of Kulap, the model captures well the observed intensity change. On the contrary, once Kulap is removed, it fails to reproduce the weakening stage of Noru. Possible mechanisms are proposed as follows: During the mutual interaction, the competition of moisture supplies will lead to a dry air layer wrapped around Noru. Meanwhile, due to the circulation of nearby Kulap, the vertical shear is relatively larger in the adjacent of Noru. As proposed by previous studies, the negative impacts by dry air layer will be enhanced through two possible pathways. The first is that the dry air directly impacts the TC inner core convection under vertical wind shears. The second is through the downward entropy flux into boundary layer, by which reducing the boundary layer entropy and thus convection. Dynamically, along with the approach of Kulap, it will induce barotropic instability at the outer region, by which greatly enhances the inner-core asymmetry. The asymmetric component will grow at the expense of the mean flow, and thus TC intensity weakens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Brand, S.: Interaction of binary tropical cyclones of the Western North Pacific Ocean. J. Appl. Meteorol. 9(3), 433–441 (1970)

    Google Scholar 

  • Braun, S.A.: Reevaluating the role of the Saharan air layer in Atlantic tropical Cyclogenesis and evolution. Mon. Weather Rev. 138(6), 2007–2037 (2010)

    Google Scholar 

  • Braun, S.A., Sippel, J.A., Nolan, D.S.: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci. 69(1), 236–257 (2012)

    Google Scholar 

  • Carr, L.E., Elsberry, R.L.: Objective diagnosis of binary tropical cyclone interactions forthe Western North Pacific Basin. Mon. Weather Rev. 126(6), 1734–1740 (1998)

    Google Scholar 

  • Carr, L.E., Boothe, M.A., Elsberry, R.L.: Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios. Mon. Weather Rev. 125(9), 2094–2111 (1997)

    Google Scholar 

  • Chang, S.W.: A numerical study of the interactions between two tropical cyclones. Mon. Weather Rev. 111(9), 1806–1817 (1983)

    Google Scholar 

  • DeMaria, M., Chan, J.C.L.: Comments on “a numerical study of the interactions between two tropical cyclones”. Mon. Weather Rev. 112(8), 1643–1645 (1984)

    Google Scholar 

  • Dong, K., Neumann, C.J.: On the relative motion of binary tropical cyclones. Mon. Weather Rev. 111(5), 945–953 (1983)

    Google Scholar 

  • Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a Mesoscale two-dimensional model. J. Atmos. Sci. 46(20), 3077–3107 (1989)

    Google Scholar 

  • Dunion, J.P., Velden, C.S.: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc. 85(3), 353–366 (2004)

    Google Scholar 

  • Emanuel, K.A.: The finite-amplitude nature of tropical Cyclogenesis. J. Atmos. Sci. 46(22), 3431–3456 (1989)

    Google Scholar 

  • Ferrier, B.: A double-moment multiple-phase four-class bulk ice scheme. Part I: description. J. Atmos. Sci. 51(2), 249–280 (1994)

    Google Scholar 

  • Finocchio, P.M., Majumdar, S.J., Nolan, D.S., Iskandarani, M.: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Weather Rev. 144(6), 2155–2175 (2016)

    Google Scholar 

  • Fujiwhara, S.: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc. 47(200), 287–292 (1921)

    Google Scholar 

  • Fujiwhara, S.: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc. 49(206), 75–104 (1923)

    Google Scholar 

  • Fujiwhara, S.: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan, Ser. 13(3), 106–110 (1931)

    Google Scholar 

  • Ge, X., Li, T., Peng, M.: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci. 70(12), 3859–3875 (2013)

    Google Scholar 

  • Ge, X., Yan, Z., Peng, M., Bi, M., Li, T.: Sensitivity of tropical cyclone track to the vertical structure of a nearby monsoon gyre. J. Atmos. Sci. 75(6), 2017–2028 (2018)

    Google Scholar 

  • Gray, W. M.: Tropical cyclone genesis. Colorado State University, Department of Atmospheric Science Paper 234, 121 pp. (1975)

  • Gu, J.-F., Tan, Z.-M., Qiu, X.: The evolution of vortex tilt and vertical motion of tropical cyclones in directional shear flows. J. Atmos. Sci. 75(10), 3565–3578 (2018)

    Google Scholar 

  • Guimond, S.R., Heymsfield, G.M., Turk, F.J.: Multiscale observations of hurricane Dennis (2005): the effects of hot towers on rapid intensification. J. Atmos. Sci. 67(3), 633–654 (2010)

    Google Scholar 

  • Hendricks, E.A., Montgomery, M.T., Davis, C.A.: The role of “Vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci. 61(11), 1209–1232 (2004)

    Google Scholar 

  • Hendricks, E., Peng, M., Ge, X., Li, T.: Performance of a dynamic initialization scheme in the coupled ocean-atmosphere Mesoscale prediction system for tropical cyclones (COAMPS-TC). Wea. Forecasting. 26, 650–663 (2011)

    Google Scholar 

  • Holland, G.J., Dietachmayer, G.S.: On the interaction of tropical-cyclone-scale vortices. III: continuous barotropic vortices. Quart. J. Roy. Meteor. Soc. 119(514), 1381–1398 (1993)

    Google Scholar 

  • Jang, W., Chun, H.-Y.: Characteristics of binary tropical cyclones observed in the Western North Pacific for 62 years (1951–2012). Mon. Weather Rev. 143(5), 1749–1761 (2015)

    Google Scholar 

  • Kain, J.S. and Fritsch, J.M.: Convective parameterization for mesoscale models: the Kain–Fritsch scheme. The representation of cumulus convection in numerical models. Meteorol. Monogr. No. 46. Amer. Meteor. Soc., 24 165–170 (1993)

  • Kimball, S.K.: A modeling study of hurricane landfall in a dry environment. Mon. Weather Rev. 134(7), 1901–1918 (2006)

    Google Scholar 

  • Kuo, H.-C., Chen, G.T.J., Lin, C.-H.: Merger of tropical cyclones Zeb and Alex. Mon. Weather Rev. 128(8), 2967–2975 (2000)

    Google Scholar 

  • Lander, M., Holland, G.J.: On the interaction of tropical-cyclone-scale vortices. I: observations. Quart. J. Roy. Meteor. Soc. 119(514), 1347–1361 (1993)

    Google Scholar 

  • Li, T.: In: Oouchi, K., Fudeyasu, H. (eds.) Synoptic and climatic aspects of tropical cyclogenesis in Western North Pacific, pp. 61–94. Nova Science Publishers, Hauppauge (2012)

    Google Scholar 

  • McBride, J.L., Zehr, R.: Observational analysis of tropical cyclone formation. Part II: comparison of non-developing versus developing systems. J. Atmos. Sci. 38(6), 1132–1151 (1981)

    Google Scholar 

  • Miyamoto, Y., Nolan, D.S.: Structural changes preceding rapid intensification in tropical cyclones as shown in a large Ensemble of Idealized Simulations. J. Atmos. Sci. 75(2), 555–569 (2018)

    Google Scholar 

  • Miyamoto, Y., Takemi, T.: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci. 70(1), 112–129 (2013)

    Google Scholar 

  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 102(D14), 16663–16682 (1997)

    Google Scholar 

  • Nolan, D.S.: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag. 56, 241–266 (2007)

    Google Scholar 

  • Onderlinde, M., Nolan, D.: Environmental Helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci. 71, 4308–4320 (2014)

    Google Scholar 

  • Peng, M.S., Reynolds, C.A.: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci. 63(10), 2508–2528 (2006)

    Google Scholar 

  • Peng, J., Li, T., Peng, M.S., Ge, X.: Barotropic instability in the tropical cyclone outer region. Quart. J. Roy. Meteor. Soc. 135(641), 851–864 (2009)

    Google Scholar 

  • Pokhil, A.E., Sitnikov, I.G., Zlenko, V.A., Polyakova, I.V.: Numerical experiments on investigation of atmospheric vortices. Meteorol. Gidrol. 4, 21–28 (1990)

    Google Scholar 

  • Prieto, R., McNoldy, B.D., Fulton, S.R., Schubert, W.H.: A classification of binary tropical cyclone–like vortex interactions. Mon. Weather Rev. 131(11), 2656–2666 (2003)

    Google Scholar 

  • Riemer, M., Montgomery, M.T., Nicholls, M.E.: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys. 13(1), 327–346 (2013)

    Google Scholar 

  • Ritchie, E.A., Holland, G.J.: On the interaction of tropical-cyclone-scale vortices. II: discrete vortex patches. Quart. J. Roy. Meteor. Soc. 119(514), 1363–1379 (1993)

    Google Scholar 

  • Schecter, D.A.: Development and nondevelopment of binary Mesoscale vortices into tropical cyclones in idealized numerical experiments. J. Atmos. Sci. 73(3), 1223–1254 (2016)

    Google Scholar 

  • Shin, S.-E., Han, J.-Y., Baik, J.-J.: On the critical separation distance of binary vortices in a nondivergent Barotropic atmosphere. J. Meteor. Soc. Japan, Ser. II. 84(5), 853–869 (2006)

    Google Scholar 

  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M., Huang, X.-Y., Wang, W., Powers, J.G.: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR 113 pp. (2008)

  • Steranka, J., Rodgers, E.B., Gentry, R.C.: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Weather Rev. 114(8), 1539–1546 (1986)

    Google Scholar 

  • Tang, B., Emanuel, K.: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc. 93(12), 1901–1912 (2012)

    Google Scholar 

  • Wang, Z.: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci. 69(8), 2433–2451 (2012)

    Google Scholar 

  • Wang, Y., Holland, G.J.: On the interaction of tropical-cyclone-scale vortices. IV: Baroclinic vortices. Quart. J. Roy. Meteor. Soc. 121(521), 95–126 (1995)

    Google Scholar 

  • Wang, Y., Rao, Y., Tan, Z.-M., Schönemann, D.: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the Western North Pacific. Mon. Weather Rev. 143(9), 3434–3453 (2015)

    Google Scholar 

  • Wu, L.: Impact of Saharan air layer on hurricane peak intensity. Geophys. Res. Lett. 34(9), L09802 (2007)

    Google Scholar 

  • Wu, C.-C., Huang, T.-S., Huang, W.-P., Chou, K.-H.: A new look at the binary interaction: potential Vorticity diagnosis of the unusual southward movement of tropical storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Weather Rev. 131(7), 1289–1300 (2003)

    Google Scholar 

  • Wu, L., Braun, S.A., Qu, J.J., Hao, X.: Simulating the formation of hurricane Isabel (2003) with AIRS data. Geophys. Res. Lett. 33(4), L04804 (2006)

    Google Scholar 

  • Wu, X., Fei, J., Huang, X., Zhang, X., Cheng, X., Ren, J.: A numerical study of the interaction between two simultaneous storms: Goni and Morakot in September 2009. Adv. Atmos. Sci. 29(3), 561–574 (2012)

    Google Scholar 

  • Yan, Z., Ge, X., Peng, M., Li, T.: Does monsoon gyre always favour tropical cyclone rapid intensification? Quart. J. Roy. Meteor. Soc. 145(8), 1–13 (2019)

    Google Scholar 

  • Yang, C.-C., Wu, C.-C., Chou, K.-H., Lee, C.-Y.: Binary interaction between typhoons Fengshen (2002) and Fungwong (2002) based on the potential Vorticity diagnosis. Mon. Weather Rev. 136(12), 4593–4611 (2008)

    Google Scholar 

  • Yuter, S.E., Houze, R.A.: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: spatial distribution of updrafts, downdrafts, and precipitation. Mon. Weather Rev. 123(7), 1921–1940 (1995)

    Google Scholar 

Download references

Acknowledgements

This work was jointly sponsored by the Science and Technology Innovation Project of Ningbo (Grant# 2019B10025), the National Key R& D Program of China (2017YFC1502000), the National Science Foundation of China (Grant No. 41575056, 41730961, 41775058), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Ge.

Additional information

Responsible Editor: Ben Jong-Dao Jou.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ge, X. Intensity Change of NORU (2017) During Binary Tropical Cyclones Interaction. Asia-Pacific J Atmos Sci 57, 135–147 (2021). https://doi.org/10.1007/s13143-020-00181-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00181-7

Keywords

Navigation