Decoding Tropospheric Ozone in Hangzhou, China: from Precursors to Sources

Abstract

For the purpose of providing a tropospheric O3 control strategy for Hangzhou, China, we investigate the influential factors of it using observed data and the WRF-CMAQ model. The result indicates that temperature and relative humidity are the dominant factors and Hangzhou belongs to VOC-limited regime. Long-range/regional transport accounts for 15.4% and 17.4% of O3 in autumn and winter, respectively, showing a north-to-south transport pattern while 14.5% and 19.7% of O3 in spring and summer, respectively, showing a southwest-to-northeast transport pattern. Annual contribution of local industry to local O3 was 59.2%, followed by residence, traffic and agriculture. Ethylene, m/p-xylene, toluene and propylene are the main O3 producers. Therefore, controlling VOCs species that possess the highest ozone formation potentials, afforestation, implementing artificial precipitation and shutdown local industry are the most effective ways to mitigate ozone pollution in Hangzhou.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alvim, D., Gatti, L., Corrêa, S., Chiquetto, J., Santos, G., Rossatti, C., Pretto, P., Rozante, J., Figueroa, S., Pendharkar, J., Nobre, P.: Determining VOCs reactivity for ozone forming potential in the megacity of São Paulo. Aerosol Air Qual. Res. 18(9), 2460–2474 (2017). https://doi.org/10.4209/aaqr.2017.10.0361

    Article  Google Scholar 

  2. Astitha, M., Luo, H., Rao, T., Hogrefe, C., Mathur, R., Kumar, N.: Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States. Atmos. Environ. 164, 102–116 (2017). https://doi.org/10.1016/j.atmosenv.2017.05.020

    Article  Google Scholar 

  3. Barnes, B., Cannizzaro, J., English, D., Hu, C.: Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sens. Environ. 220, 110–123 (2019). https://doi.org/10.1016/j.rse.2018.10.034

    Article  Google Scholar 

  4. Boylan, J.W., Russell, A.G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 40(26), 4946–4959 (2006). https://doi.org/10.1016/j.atmosenv.2005.09.087

    Article  Google Scholar 

  5. Breedt, H., Craig, K., Jothiprakasam, V.: Monin-Obukhov similarity theory and its application to wind flow modelling over complex terrain. J. Wind Eng. Ind. Aerodyn. 182, 308–321 (2018). https://doi.org/10.1016/j.jweia.2018.09.026

    Article  Google Scholar 

  6. Carter, W.: Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 44(40), 5324–5335 (2010). https://doi.org/10.1016/j.atmosenv.2010.01.026

    Article  Google Scholar 

  7. Carter, W., Seinfeld, J.: Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmos. Environ. 50, 255–266 (2012). https://doi.org/10.1016/j.atmosenv.2011.12.025

    Article  Google Scholar 

  8. Chan, K., Yao, X.: Air pollution in mega cities in China. Atmos. Environ. 42(1), 1–42 (2008). https://doi.org/10.1016/j.atmosenv.2007.09.003

    Article  Google Scholar 

  9. Chan, K., Wang, S., Liu, C., Zhou, B., Wenig, M., Saiz-Lopez, A.: On the summertime air quality and related photochemical processes in the megacity Shanghai, China. Sci. Total Environ. 580, 974–983 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.052

    Article  Google Scholar 

  10. Chen, Y., Zhu, Z., Luo, L., Zhang, J.: Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies. Dyn. Atmos. Oceans. 81, 73–83 (2018). https://doi.org/10.1016/j.dynatmoce.2018.01.002

    Article  Google Scholar 

  11. Cho, S., Morris, R., McEachern, P., Shah, T., Johnson, J., Nopmongcol, U.: Emission sources sensitivity study for ground-level ozone and PM2.5 due to oil sands development using air quality modeling system: part II- source apportionment modeling. Atmos. Environ. 55, 542–556 (2012). https://doi.org/10.1016/j.atmosenv.2012.02.025

    Article  Google Scholar 

  12. Dong, H., Cao, S., Takemi, T., Ge, Y.: WRF simulation of surface wind in high latitudes. J. Wind Eng. Ind. Aerodyn. 179, 287–296 (2018). https://doi.org/10.1016/j.jweia.2018.06.009

    Article  Google Scholar 

  13. Feng, R., Wang, Q., Huang, C., Liang, J., Luo, K., Fan, J., Zheng, H.: Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian games. Environ. Chem. Lett. (2018). https://doi.org/10.1007/s10311-018-00846-w

  14. Feng, R., Wang, Q., Huang, C., Liang, J., Luo, K., Fan, J., Cen, K.: Investigation on air pollution control strategy in Hangzhou for post-G20/pre-Asian-games period (2018–2020). Atmos. Pollut. Res. 10(1), 197–208 (2019). https://doi.org/10.1016/j.apr.2018.07.006

    Article  Google Scholar 

  15. Fountoukis, C., Martín-Pomares, L., Perez-Astudillo, D., Bachour, D., Gladich, I.: Simulating global horizontal irradiance in the Arabian Peninsula: sensitivity to explicit treatment of aerosols. Sol. Energy. 163, 347–355 (2018). https://doi.org/10.1016/j.solener.2018.02.001

    Article  Google Scholar 

  16. Fu, Q., Mo, Z., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, P., Wu, L., Lou, X., Chen, Z., Yao, K.: Air pollution and outpatient visits for conjunctivitis: a case-crossover study in Hangzhou, China. Environ. Pollut. 231(2), 1344–1350 (2017). https://doi.org/10.1016/j.envpol.2017.08.109

    Article  Google Scholar 

  17. Ganeshan, M., Murtugudde, R., Imhoff, M.: A multi-city analysis of the UHI-influence on warm season rainfall. Urban Climate. 6, 1–23 (2013). https://doi.org/10.1016/j.uclim.2013.09.004

    Article  Google Scholar 

  18. Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., Shao, P.: A case study of surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China. Sci. Total Environ. 544, 853–863 (2016). https://doi.org/10.1016/j.scitotenv.2015.12.039

    Article  Google Scholar 

  19. Gao, W., Tie, X., Xu, J., Huang, R., Mao, X., Zhou, G., Chang, L.: Long-term trend of O3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Sci. Total Environ. 603-604, 425–433 (2017). https://doi.org/10.1016/j.scitotenv.2017.06.099

    Article  Google Scholar 

  20. Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., Tang, X., Zhao, C.: Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. 42 (29). Atmos. Environ. 42(29), 6873–6883 (2008). https://doi.org/10.1016/j.atmosenv.2008.05.045

    Article  Google Scholar 

  21. Geng, F., Qiang, Z., Tie, X., Huang, M., Ma, X., Deng, Z., Quan, J., Zhao, C.: Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmos. Environ. 43, 584–593 (2009). https://doi.org/10.1016/j.atmosenv.2008.10.021

    Article  Google Scholar 

  22. Geng, F., Tie, X., Guenther, A., Li, G., Cao, J., Harley, P.: Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China. Atmos. Chem. Phys. 11, 10449–10459 (2011). https://doi.org/10.5194/acp-11-10449-2011

    Article  Google Scholar 

  23. He, X., Pang, S., Ma, J., Zhang, Y.: Influence of relative humidity on heterogeneous reactions of O3 and O3/SO2 with soot particles: potential for environmental and health effects. Atmos. Environ. 165, 198–206 (2017). https://doi.org/10.1016/j.atmosenv.2017.06.049

    Article  Google Scholar 

  24. Hou, X., Zhu, B., Fei, D., Wang, D.: The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region. Sci. Total Environ. 502, 641–649 (2015). https://doi.org/10.1016/j.scitotenv.2014.09.075

    Article  Google Scholar 

  25. Hua, Y., Xie, R., Su, Y.: Fiscal spending and air pollution in Chinese cities: identifying composition and technique effects. China Econ. Rev. 47, 156–169 (2018). https://doi.org/10.1016/j.chieco.2017.09.007

    Article  Google Scholar 

  26. Ito, T., Ogino, K., Nagaoka, K., Takemoto, K.: Relationship of particulate matter and ozone with 3-nitrotyrosine in the atmosphere. Environ. Pollut. 236, 948–952 (2018). https://doi.org/10.1016/j.envpol.2017.10.069

    Article  Google Scholar 

  27. Kishné, A., Yiman, Y., Morgan, C., Dornblaser, B.: Evaluation and improvement of the default soil hydraulic parameters for the Noah land surface model. Geoderma. 285, 247–259 (2017). https://doi.org/10.1016/j.geoderma.2016.09.022

    Article  Google Scholar 

  28. Kumar, M., Tsujimura, T., Suzuki, Y.: NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine. Energy. 145, 495–506 (2018). https://doi.org/10.1016/j.energy.2017.12.148

    Article  Google Scholar 

  29. Li, J., Yang, W., Wang, Z., Chen, H., Hu, B., Li, J., Sun, Y., Fu, P., Zhang, Y.: Modeling study of surface ozone source-receptor relationships in East Asia. Atmos. Res. 167, 77–88 (2016a). https://doi.org/10.1016/j.atmosres.2015.07.010

    Article  Google Scholar 

  30. Li, M., Song, Y., Mao, Z., Liu, M., Huang, X.: Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmos. Environ. 127, 382–392 (2016b). https://doi.org/10.1016/j.atmosenv.2015.10.075

    Article  Google Scholar 

  31. Li, K., Chen, L., Ying, F., White, S., Jang, C., Wu, X., Gao, X., Hong, S., Shen, J., Azzi, M., Cen, K.: Meteorological and chemical impacts on ozone formation: a case study in Hangzhou, China. Atmos. Res. 196, 40–52 (2017). https://doi.org/10.1016/j.atmosres.2017.06.003

    Article  Google Scholar 

  32. Li, K., Hong, L., White, S., Zheng, X., Lv, B., Lin, C., Bao, Z., Wu, X., Gao, X., Ying, F., Shen, J., Azzi, M., Cen, K.: Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environ. Pollut. 232, 42–54 (2018a). https://doi.org/10.1016/j.envpol.2017.09.016

    Article  Google Scholar 

  33. Li, S., Wang, T., Huang, X., Pu, X., Li, M., Chen, P., Yang, X., Wang, M.: Impact of east Asian summer monsoon on surface ozone pattern in China. J. Geophys. Res.-Atmos. 123(2), 1401–1411 (2018b). https://doi.org/10.1002/2017JD027190

    Article  Google Scholar 

  34. Li, G., Zhang, X., Mirzaei, P., Zhang, J., Zhao, Z.: Urban heat island effect of a typical valley city in China: responds to the global warming and rapid urbanization. Sustain. Cities Soc. 38, 736–745 (2018c). https://doi.org/10.1016/j.scs.2018.01.033

    Article  Google Scholar 

  35. Liao, Z., Gao, M., Sun, J., Fan, S.: The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Sci. Total Environ. 607-608, 838–846 (2016). https://doi.org/10.1016/j.scitotenv.2017.07.031

    Article  Google Scholar 

  36. Liu, X., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D., Jang, C., Wang, W., Hao, J.: Understanding of regional air pollution over China using CMAQ, part II: process analysis and sensitivity of ozone and particulate matter to precursor emissions. Atmos. Environ. 44(30), 3719–3727 (2010). https://doi.org/10.1016/j.atmosenv.2010.03.036

    Article  Google Scholar 

  37. Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., He, K.: Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 173, 223–230 (2018a). https://doi.org/10.1016/j.atmosenv.2017.11.014

    Article  Google Scholar 

  38. Liu, Y., Li, L., An, J., Huang, L., Yan, R., Huang, C., Wang, H., Wang, Q., Wang, M., Zhang, W.: Estimation of biogenic VOCS emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos. Environ. 186, 113–128 (2018b). https://doi.org/10.1016/j.atmosenv.2018.05.027

    Article  Google Scholar 

  39. Marais, E., Jacob, D., Wecht, K., Lerot, C., Zhang, L., Yu, K., Kurosu, T., Chance, K., Sauvage, B.: Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: a view from space. Atmos. Environ. 99, 32–40 (2014). https://doi.org/10.1016/j.atmosenv.2014.09.055

    Article  Google Scholar 

  40. Mohr, K., Tao, W., Chern, J., Kumar, S., Peters-Lidard, C.: The NASA-Goddard multi-scale modeling framework–land information system: global land/atmosphere interaction with resolved convection. Environ. Model Softw. 39, 103–115 (2013). https://doi.org/10.1016/j.envsoft.2012.02.023

    Article  Google Scholar 

  41. Oyola, M., Schneider, A., Campbell, J., Joseph, E.: Meteorological influences on tropospheric ozone over suburban Washington, DC. Aerosol Air Qual. Res. 18(5), 1168–1182 (2017). https://doi.org/10.4209/aaqr.2017.12.0574

    Article  Google Scholar 

  42. Qian, Z.: Hangzhou. In: City Profile: Hangzhou. Cities, vol. 48, pp. 42–54 (2015). https://doi.org/10.1016/j.cities.2015.06.004

    Google Scholar 

  43. Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin, Y., Jin, T., Wang, A., Liu, Y., Dai, Q., Liu, B., Wang, Y., Mao, H.: Air pollution in China: status and spatiotemporal variations. Environ. Pollut. 227, 334–347 (2017). https://doi.org/10.1016/j.envpol.2017.04.075

    Article  Google Scholar 

  44. Tai, A., Martin, A.: Impacts of ozone air pollution and temperature extremes on crop yields: spatial variability, adaptation and implications for future food security. Atmos. Environ. 169, 11–21 (2016). https://doi.org/10.1016/j.atmosenv.2017.09.002

    Article  Google Scholar 

  45. Tambo, E., Wang, D., Zhou, X.: Tackling air pollution and extreme climate changes in China: implementing the Paris climate change agreement. Environ. Int. 95, 152–156 (2016). https://doi.org/10.1016/j.envint.2016.04.010

    Article  Google Scholar 

  46. Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q., Zhang, Y.: Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ. 636, 775–786 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.286

    Article  Google Scholar 

  47. Telesnicki, M., Martínez-Ghersa, M., Ghersa, C.: Plant oxidative status under ozone pollution as predictor for aphid population growth: the case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae). Biochem. Syst. Ecol. 77, 51–56 (2018). https://doi.org/10.1016/j.bse.2018.02.004

    Article  Google Scholar 

  48. Tie, X., Geng, F., Guenther, A., Cao, J., Greenburg, J., Zhang, R., Apel, E., Li, G., Weinheimer, A., Chen, J., Cai, C.: Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. Atmos. Chem. Phys. 13, 5655–5669 (2013). https://doi.org/10.5194/acp-13-5655-2013

    Article  Google Scholar 

  49. Wang, T., Wei, X., Ding, A.: Increasing surface ozone concentrations in the background-level atmosphere of Southern China, 1994–2007. Atmos. Chem. Phys. 9(16), 6217–6227 (2009)

    Article  Google Scholar 

  50. Wang, P., Schade, G., Estes, M., Ying, Q.: Improved MEGAN predictions of biogenic isoprene in the contiguous United States. Atmos. Environ. 148, 337–351 (2017). https://doi.org/10.1016/j.atmosenv.2016.11.006

    Article  Google Scholar 

  51. Wang, Y., Du, H., Xu, Y., Lu, D., Wang, X., Guo, Z.: Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 631-632, 921–933 (2018a). https://doi.org/10.1016/j.scitotenv.2018.03.050

    Article  Google Scholar 

  52. Wang, Q., Li, S., Dong, M., Li, W., Gao, X., Ye, R., Zhang, D.: VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 182, 234–241 (2018b). https://doi.org/10.1016/j.atmosenv.2018.03.034

    Article  Google Scholar 

  53. Wie, J., Moon, B.: Impact of the Western North Pacific subtropical high on summer surface ozone in the Korean Peninsula. Atmos. Pollut. Res. 9(4), 655–661 (2018). https://doi.org/10.1016/j.apr.2017.12.012

    Article  Google Scholar 

  54. Wu, W.: City profile: Shanghai. Cities. 16(3), 207–216 (1999). https://doi.org/10.1016/S0264-2751(98)00047-X

    Article  Google Scholar 

  55. Wu, X., Chen, S., Guo, J., Gao, G.: Effect of air pollution on the stock yield of heavy pollution enterprises in China's key control cities. J. Clean. Prod. 170, 399–406 (2018). https://doi.org/10.1016/j.jclepro.2017.09.154

    Article  Google Scholar 

  56. Xiao, H., Sun, J., Bian, X., Dai, Z.: GPU acceleration of the WSM6 cloud microphysics scheme in GRAPES model. Comput. Geosci. 59, 156–162 (2013). https://doi.org/10.1016/j.cageo.2013.06.016

    Article  Google Scholar 

  57. Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P., Ding, A.: Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos. Environ. 168, 112–124 (2017). https://doi.org/10.1016/j.atmosenv.2017.08.035

    Article  Google Scholar 

  58. Zepka, G., Pinto, O., Saraiva, A.: Lightning forecasting in southeastern Brazil using the WRF model. Atmos. Res. 135-136, 344–362 (2014). https://doi.org/10.1016/j.atmosres.2013.01.008

    Article  Google Scholar 

  59. Zhang, W., Wang, G., Liu, X., Feng, Z.: Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China. Plant Sci. 226, 172–181 (2014). https://doi.org/10.1016/j.plantsci.2014.04.020

    Article  Google Scholar 

  60. Zhang, Y., Qu, S., Zhao, J., Zhu, G., Zhang, Y., Lu, X., Sabel, C., Wang, H.: Quantifying regional consumption-based health impacts attributable to ambient air pollution in China. Environ. Int. 112, 100–106 (2018). https://doi.org/10.1016/j.envint.2017.12.021

    Article  Google Scholar 

  61. Zhao, Z., Wang, Y.: Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China. Atmos. Environ. 170, 197–204 (2017). https://doi.org/10.1016/j.atmosenv.2017.09.024

    Article  Google Scholar 

  62. Zhao, Y., Xia, Y., Zhou, Y.: Assessment of a high-resolution NOX emission inventory using satellite observations: a case study of southern Jiangsu, China. Atmos. Environ. 190, 135–145 (2018). https://doi.org/10.1016/j.atmosenv.2018.07.029

    Article  Google Scholar 

  63. Zouzelka, R., Rathousky, J.: Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 217, 466–476 (2017). https://doi.org/10.1016/j.apcatb.2017.06.009

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 51390493 and 51476144).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rui Feng or Kun Luo.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Yunsoo Choi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Luo, K. & Fan, J. Decoding Tropospheric Ozone in Hangzhou, China: from Precursors to Sources. Asia-Pacific J Atmos Sci 56, 321–331 (2020). https://doi.org/10.1007/s13143-019-00124-x

Download citation

Keywords

  • O3-VOC-NOx
  • Ozone formation potentials
  • WRF-CMAQ
  • Regional/long-range transport
  • Local sector contribution