Skip to main content
Log in

Development of Fog Detection Algorithm during Nighttime Using Himawari-8/AHI Satellite and Ground Observation Data

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, we developed a hybrid nighttime fog detection algorithm based on the optical and textural characteristics of fog from Himawari-8/ advanced Himawari imager (AHI) data and ground temperature data. The Dual Cannel Difference (DCD) caused by the emissivity difference between the 3.9 and 11.2 μm is the main evaluation element for fog detection. And, the local standard deviation of Brightness Temperature (BT) and difference between fog top BT and ground temperature (sea surface temperature) were used to distinguish between fog and low cloud. The thresholds and weights of the three evaluation elements were initially determined by visual inspection of fog cases and optimized through receiver operating characteristics analysis using training cases. Although the level of fog detection differs depending on the fog intensity and weather conditions, the quantitative evaluation of results using ground observed visibility data showed that average probability of detection and false alarm ratio are 0.64 (0.24 ~ 0.89) and 0.56 (0.33 ~ 0.71), respectively. We performed sensitivity tests for fog detection methods because the detection levels can be affected by fog detection method. As a result, the Weighted Sum Method (WSM) showed a slightly lowered detection level compared to that of the Simple Decision Tree (SDT), average differences, hit rate, hanssen-kuiper skill score, threat score, and bias are −0.31, 0.01, −0.12, and 2.07, respectively. And more works are needed for the improvement of fog detection levels through the sophistication of thresholds and weights using more cases, because detection level is sensitive to fog cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anthis, A.I., Cracknell, A.P.: Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas. Int. J. Remote Sens. 20, 1107–1124 (1999). https://doi.org/10.1080/014311699212876

    Article  Google Scholar 

  • Bendix, J.: Fog climatology of the Po Valley. Riv. Meteorol. Aeronaut. 54, 25–36 (1994)

    Google Scholar 

  • Bendix, J., Thies, B., Cermak, J., Nauß, T.: Ground fog detection from space based on MODIS daytime data—a feasibility study. Wea. Forecast. 20, 989–1005 (2005). https://doi.org/10.1175/WAF886.1

    Article  Google Scholar 

  • Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., Yoshida, R.: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 94, 151–183 (2016). https://doi.org/10.2151/jmsj.2016-009

    Article  Google Scholar 

  • Chaurasia, S., Sathiyamoorthy, V., Paul Shukla, B., Simon, B., Joshi, P.C., Pal, P.K.: Night time fog detection using MODIS data over northern India. J. Appl. Meteorol. 18, 483–494 (2011). https://doi.org/10.1002/met.248

    Article  Google Scholar 

  • Dybbroe, A., 1993: Automatic detection of fog at night using AVHRR data, AVHRR Data Users’ Meeting, Belgirate, Italy

  • Ellrod, G.P.: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecast. 10, 606–619 (1995). https://doi.org/10.1175/1520-0434

    Article  Google Scholar 

  • Eyre, J.R., Brownscombe, J.L., Allam, R.J.: Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery. Meteorol. Mag. 113, 266–271 (1984)

    Google Scholar 

  • Gao, S., Wu, W., Zhu, L., Fu, G., Huang, B.: Detection of nighttime sea fog/stratus over the Huang-Hai Sea using MTSAT-1R IR data. Acta Oceanol. Sin. 28, 23–35 (2009). https://doi.org/10.3969/j.issn.0253-505X.2009.02.003

    Google Scholar 

  • Gultepe, I., Pagowski, M., Reid, J.: A satellite-based fog detection scheme using screen air temperature. Wea. Forecast. 22, 444–456 (2007). https://doi.org/10.1175/WAF1011.1

    Article  Google Scholar 

  • Heo, K.-Y., Min, S.-Y., Ha, K.-J., Kim, J.-H.: Discrimination between sea fog and low stratus using texture structure of MODIS satellite images. Kor. J. Remote Sens. 24, 571–581 (2008)

    Google Scholar 

  • Hunt, G.E.: Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. Quart. J. Roy. Meteorol. Soc. 99, 346–369 (1973). https://doi.org/10.1002/qj.49709942013

    Google Scholar 

  • Jhun, J.-G., Lee, E.-J., Ryu, S.-A., Yoo, S.-H.: Characteristics of regional fog occurrence and its relation to concentration of air pollutants in South Korea. J. Korean Meteorol. Soc. 23, 103–112 (1998)

    Google Scholar 

  • Kim, M.-O., 1998: The characteristics of sea fog distribution around the Korean peninsula. M.S. thesis, Department of Oceanography, Chonnam National University. (in Korean)

  • Kim, B.-R., I.-C. Shin, J.-Y. Jung, and, S.-K. Baek, 2017: A Study on Observation Error Covariance Production of Clear Sky Radiance of Himawari-8 for Supporting and Utilizing Numerical Forecasting of Satellite Data, The Autumn Meeting of KMS, Busan, Korea

  • KMA, 2014: Meteorological Information Portal Service System. Available at https://afso.kma.go.kr/afsOut/rsp/ptl/login.jsp

  • KMA, 2015: National Climate Data Service System. Available at http://data.kma.go.kr/cmmn/main.do

  • KMA and KMS, 2015: Glossary of atmospheric science, Sigma Press, 406 pp.

  • Ladochy, S., Witiw, M.: The continued reduction in dense fog in the Southern California region: possible causes. Pure Appl. Geophys. 169, 1157–1163 (2012). https://doi.org/10.1007/s00024-011-0366-3

    Article  Google Scholar 

  • Lee, S.-J., 2016: Development of fog detection algorithm based on the optical and textural properties of fog using COMS data. M.S. thesis, Department of Atmospheric Science, Kongju National University. (in Korean)

  • Lee, J.-R., Chung, C.-Y., Ou, M.-L.: Fog detection using geostationary satellite data: temporally continuous algorithm. Asia-Pacific J. Atmos. Sci. 47(2), 113–122 (2011). https://doi.org/10.1007/s13143-011-0002-2

    Article  Google Scholar 

  • Lee, Y.-H., H.-Y. Lee, J.-S. Lee, K.-H. Lee, and D.-J. Kim, 2015: Sensitive Test of Precipitation Prediction According to Boundary Region Expansion of Local Forecast Model, The Spring Meeting of KMS, Gyeongju, Korea

  • NMSC, 2010: Available at http://nmsc.kma.go.kr/html/homepage/ko/main.do

  • NMSC, 2015: MATE Algorithm Test Bed. Available at http://mate.etri.re.kr/testbed/main.do

  • Nowak, D., Ruffieux, D., Agnew, J.L., Vuilleumier, L.: Detection of fog and low cloud boundaries with ground-based remote sensing systems. J. Atmos. Ocean. Technol. 25, 1357–1368 (2008). https://doi.org/10.1175/2007JTECHA950.1

    Article  Google Scholar 

  • Park, H.-M., Kim, J.-H.: Detection of sea fog by combining MTSAT infrared and AMSR microwave measurements around the Korean peninsula. Atmosphere. 22, 163–174 (2012). https://doi.org/10.14191/Atmos.2012.22.2.163

    Article  Google Scholar 

  • Phila, S., Paidamwoyo, M., John, O., Mahlatse, K.: A comparison of normalised difference snow index (NDSI) and normalised difference principal component snow index (NDPCSI) techniques in distinguishing snow from related land cover types. South African Journal of Geomatics. 3(2), 197–209 (2014). https://doi.org/10.4314/sajg.v3i2.6

    Article  Google Scholar 

  • Shang, H., Chen, L., Letu, H., Zhao, M., Li, S., Bao, S.: Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. J. Geophys. Res. Atmos. 122, 3528–3543 (2017). https://doi.org/10.1002/2016JD025659

  • Shin, D.-G., Park, H.-M., Kim, J.-H.: Analysis of the fog detection algorithm of DCD method with SST and CALIPSO data. Atmosphere. 23, 471–483 (2013). https://doi.org/10.14191/Atmos.2013.23.4.471

    Article  Google Scholar 

  • Suh, M.-S., Lee, S.-J., Kim, S.-H., Han, J.-H., Seo, E.-K.: Development of land fog detection algorithm based on the optical and textural properties of fog using COMS data. Korea J. Remote Sens. 33, 359–385 (2017)

    Google Scholar 

  • Underwood, S.J., Ellrod, G.P., Kuhnert, A.L.: A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the GOES nighttime fog product. J. Appl. Meteorol. 43, 297–311 (2004). https://doi.org/10.1175/1520-0450

    Article  Google Scholar 

  • Wilks, D. S., 2011: Statistical methods in the atmospheric sciences, Academic Press, 308–318 pp.

  • Yi, L., Thies, B., Zhang, S., Shi, X., Bendix, J.: Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime data as a prerequisite for Yellow Sea fog detection. Remote Sens. 8, 8 (2015a). https://doi.org/10.3390/rs8010008

    Article  Google Scholar 

  • Yi, L., Zhang, S.P., Thies, B., Shi, X.M., Trachte, K., Bendix, J.: Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with geostationary satellite data as a precondition for ground fog detection-a feasibility study. Atmos. Res. 151, 212–223 (2015b). https://doi.org/10.1016/j.atmosres.2014.03.020

    Article  Google Scholar 

  • Yoo, J.-M., Jeong, M.-J., Yun, M.-Y.: Optical characteristics of fog in satellite observation (MODIS) and numerical simulation; effect of upper clouds in nighttime fog detection. J. Korean Meteorol. Soc. 41, 639–650 (2005)

    Google Scholar 

  • Yoo, J.-M., Yun, M.-Y., Jeong, M.-J., Ahn, M.-H.: Fog detection over the Korean peninsula derived from satellite observations of polar-orbit (MODIS) and geostationary (GOES-9). J. of Korean Earth Science Society. 27, 450–463 (2006)

    Google Scholar 

  • Yoo, J.-H., Suh, J.-K., Park, S.-Y., Park, S.-L., Ko, W.-I., Park, J.-H.: A Study on the Characteristics of Fog in Gangwon Province Using Visibility Meter Data (2014~2015). The Autumn Meeting of KMS, Busan (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by “Development of Scene Analysis & Surface Algorithms” project, funded by ETRI, which is a subproject of “Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2018-01)” program funded by NMSC (National Meteorological Satellite Center) of KMA (Korea Meteorological Administration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Seok Suh.

Additional information

Responsible Editor: Lei Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Suh, MS. & Han, JH. Development of Fog Detection Algorithm during Nighttime Using Himawari-8/AHI Satellite and Ground Observation Data. Asia-Pacific J Atmos Sci 55, 337–350 (2019). https://doi.org/10.1007/s13143-018-0093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0093-0

Keywords

Navigation