Skip to main content
Log in

Combined Effect of the Madden-Julian Oscillation and Arctic Oscillation on Cold Temperature Over Asia

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The combined effect of the Madden−Julian oscillation (MJO) and Arctic oscillation (AO) on the temperature variation over Asia is investigated using the thermodynamic budget equation. Because of the distinct geographical origin of the two atmospheric modes, the influence of AO is more dominant in the higher latitude, whereas the MJO impact is more predominant in the lower latitude. Hence, the physical process responsible for the surface cold anomaly is different for northern and southern Asia. Cold anomaly appears in most of Asia 20–25 days after the MJO phase 6 (corresponding to the phase 2–3). However, more strengthened cold anomaly occurs over northern Asia under the negative AO state and it is caused by advection of temperature anomaly by climatological northerly wind associated with the East Asia winter monsoon flow. On the other hand, much stronger cold anomaly is seen over southern Asia under the positive AO state for the same lag day of the initial MJO phase 6. Aside from the upward overturning circulation forced by the tropical MJO over the subtropics and lower midlatitudes, the weakening of the East Asia subtropical jet by the positive AO induces additional upward motion over southern Asia to adjust the thermal wind balance. The combined effect of the MJO and AO also influences on the occurrence of extreme cold event. Under the negative (positive) AO phase, the extreme cold event occurrence probability over northern (southern) Asia increases by 90% (60%) compared to that for all winter days. The relative increase rate for the MJO phases 2–3 is ~30% over southern Asia. The cold event occurrence probability for the combined modes is about the twice that for only MJO impact, suggesting that an incorporation of both modes enhance the predictability of extreme cold event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adames, Á.F., Wallace, J.M.: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci. 71, 2007–2026 (2014). https://doi.org/10.1175/JAS-D-13-0254.1

    Article  Google Scholar 

  • Bessafi, M., Wheeler, M.C.: Modulation of South Indian Ocean tropical cyclones by the madden–Julian oscillation and convectively coupled equatorial waves. Mon. Weather Rev. 134, 638–656 (2006)

    Article  Google Scholar 

  • Branstator, G.: Circumglobal teleconnections, the Jetstream waveguide, and the North Atlantic oscillation. J. Clim. 15, 1893–1910 (2002)

    Article  Google Scholar 

  • Flatau, M., Kim, Y.-J.: Interaction between the MJO and polar circulations. J. Clim. 26, 3562–3574 (2013). https://doi.org/10.1175/JCLI-D-11-00508.1

    Article  Google Scholar 

  • Gao, Y., Coauthors: Arctic Sea ice and Eurasian climate: a review. Adv. Atmos. Sci. 32, 92–114 (2015). https://doi.org/10.1007/s00376-014-0009-6

    Article  Google Scholar 

  • Garfinkel, C.I., Hartmann, D.L.: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res. 113, D18114 (2008). https://doi.org/10.1029/2008JD009920.

    Article  Google Scholar 

  • Garfinkel, C.I., Feldstein, S.B., Waugh, D.W., Yoo, C., Lee, S.: Observed connection between stratospheric sudden warmings and the madden-Julian oscillation. Geophys. Res. Lett. 39, L18807 (2012). https://doi.org/10.1029/2012GL053144

    Article  Google Scholar 

  • Gong, D.Y., Gao, Y., Guo, D., Mao, R., Yang, J., Hu, M., Gao, M.: Interannual linkage between Arctic/North Atlantic oscillation and tropical Indian Ocean precipitation during boreal winter. Clim. Dyn. 42(3–4), 1007–1027 (2014)

    Article  Google Scholar 

  • Hall, J.D., Matthews, A.J., Karoly, D.J.: The modulation of tropical cyclone activity in the Australian region by the madden–Julian oscillation. Mon. Weather Rev. 129, 2970–2982 (2001)

    Article  Google Scholar 

  • Hendon, H.H., Liebmann, B.: The intraseasonal (30-50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci. 47, 2909–2923 (1990)

    Article  Google Scholar 

  • Holton, J.R.: An Introduction to Dynamic Meteorology, 4th edn. Elsevier Academic Press (2004) 167 pp

  • Hoyos, C.D., Webster, P.J.: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Clim. 20, 4402–4424 (2007)

    Article  Google Scholar 

  • Jeong, J.-H., Ho, C.-H.: Changes in occurrence of cold surges over East Asia in association with Arctic oscillation. Geophys. Res. Lett. 32, L14704 (2005). https://doi.org/10.1029/2005GL023024

    Article  Google Scholar 

  • Jeong, J.-H., Ho, C.-H., Kim, B.-M., Kwon, W.-T.: Influence of the madden-Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res. 110, D11104 (2005). https://doi.org/10.1029/2004JD005408.

    Article  Google Scholar 

  • Jeong, J.-H., Kim, B.-M., Ho, C.-H., Noh, Y.-H.: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Clim. 21, 788–801 (2008)

    Article  Google Scholar 

  • Jhun, J.-G., Lee, E.-J.: A new east Asian winter monsoon index and associated characteristics of winter monsoon. J. Clim. 17, 711–726 (2004)

    Article  Google Scholar 

  • Kim, H.-K., Seo, K.-H.: Cluster analysis of tropical cyclone tracks over the western North Pacific using a self-organizing map. J. Clim. 29, 3731–3751 (2016)

    Article  Google Scholar 

  • Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., Takahashi, K.: The JRA-55 reanalysis: general specifications and basic characteristics. J. meteor. Soc. Japan. 93, 5–48 (2015). https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  • L’Heureux, M.L., Coauthors: Strong relations between ENSO and the Arctic oscillation in the north American multimodel ensemble. Geophys. Res. Lett. 44, 11,654–11,662 (2017). https://doi.org/10.1002/2017GL074854

    Article  Google Scholar 

  • L’Heureux, M.L., Higgins, R.W.: Boreal winter links between the madden-Julian oscillation and the Arctic oscillation. J. Clim. 21, 3040–3050 (2008)

    Article  Google Scholar 

  • Li, F., Wang, H.J., Liu, J.P.: The strengthening relationship between Arctic oscillation and ENSO after the mid-1990s. Int. J. Climatol. 34, 2515–2521 (2014)

    Article  Google Scholar 

  • Lin, H., Brunet, G.: The influence of the madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Weather Rev. 137, 2250–2262 (2009)

    Article  Google Scholar 

  • Lin, H., Brunet, G.: Impact of the North Atlantic oscillation on the forecast skill of the madden-Julian oscillation. Geophys. Res. Lett. 38, L02802 (2011). https://doi.org/10.1029/2010GL046131

    Google Scholar 

  • Lin, H., Brunet, G., Mo, R.: Impact of the madden–Julian oscillation on wintertime precipitation in Canada. Mon. Weather Rev. 138, 3822–3839 (2010)

    Article  Google Scholar 

  • Liu, C., Tian, B., Li, K.-F., Manney, G.L., Livesey, N.J., Yung, Y.L., Waliser, D.E.: Northern hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: influence of the madden-Julian oscillation and quasi-biennial oscillation. J. Geophys. Res. Atmos. 119, 12,599–12,620 (2014). https://doi.org/10.1002/2014JD021876

    Article  Google Scholar 

  • Madden, R.A., Julian, P.R.: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29, 1109–1123 (1972)

    Article  Google Scholar 

  • Marshall, A.G., Hendon, H.H., Son, S.-W., Lim, Y.: Impact of the quasi-biennial oscillation on predictability of the madden–Julian oscillation. Clim. Dyn. 49, 1365–1377 (2017). https://doi.org/10.1007/s00382-016-3392-0

    Article  Google Scholar 

  • Moon, J.-Y., Wang, B., Ha, K.-J.: ENSO regulation of MJO teleconnection. Clim. Dyn. 37, 1133–1149 (2011)

    Article  Google Scholar 

  • Park, T.-W., Ho, C.-H., Yang, S., Jeong, J.-H.: Influences of Arctic oscillation and madden-Julian oscillation on cold surges and heavy snowfalls over Korea: a case study for the winter of 2009–2010. J. Geophys. Res. 115, D23122 (2010). https://doi.org/10.1029/2010JD014794

    Article  Google Scholar 

  • Park, T.-W., Ho, C.-H., Yang, S.: Relationship between the Arctic oscillation and cold surges over East Asia. J. Clim. 24, 68–83 (2011)

    Article  Google Scholar 

  • Quadrelli, R., Wallace, J.M.: Dependence of the structure of the northern hemisphere annular mode on the polarity of ENSO. Geophys. Res. Lett. 29, 2132–47-4 (2002). https://doi.org/10.1029/2002GL015807.

    Article  Google Scholar 

  • Seo, K.-H., Lee, H.-J.: Mechanisms for a PNA-like teleconnection pattern in response to MJO. J. Atmos. Sci. 74, 1767–1781 (2017). https://doi.org/10.1175/JAS-D-16-0343.1

    Article  Google Scholar 

  • Seo, K.-H., Son, S.-W.: The global atmospheric circulation response to tropical diabatic heating associated with the madden–Julian oscillation during northern winter. J. Atmos. Sci. 69, 79–96 (2012)

    Article  Google Scholar 

  • Seo, K.-H., Lee, H.-J., Frierson, D.M.W.: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the northern hemisphere continents in response to the MJO. J. Atmos. Sci. 73, 3557–3571 (2016)

    Article  Google Scholar 

  • Shimizu, M.H., Ambrizzi, T.: MJO influence on ENSO effects in precipitation and temperature over South America. Theor. Appl. Climatol. 124(1–2), 291–301 (2016). https://doi.org/10.1007/s00704-015-1421-2

    Article  Google Scholar 

  • Sun, L., Deser, C., Tomas, R.A.: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic Sea ice loss. J. Clim. 28, 7824–7845 (2015). https://doi.org/10.1175/JCLI-D-15-0169.1

    Article  Google Scholar 

  • Takaya, K., Nakamura, H.: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci. 62, 4423–4440 (2005). https://doi.org/10.1175/JAS3629.1

    Article  Google Scholar 

  • Tang, Q., Zhang, X., Yang, X., Francis, J.A.: Cold winter extremes in northern continents linked to arctic sea ice loss. Environ. Res. Lett. 8, 014036 (2013). https://doi.org/10.1088/1748-9326/8/1/014036

    Article  Google Scholar 

  • Thompson, D.W.J., Wallace, J.M.: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998). https://doi.org/10.1029/98GL00950

    Article  Google Scholar 

  • Vecchi, G.A., Bond, N.A.: The madden-Julian oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett. 31, L04104 (2004). https://doi.org/10.1029/2003GL018645

    Article  Google Scholar 

  • Watanabe, M.: Asian jet waveguide and a downstream extension of the North Atlantic oscillation. J. Clim. 17, 4674–4691 (2004). https://doi.org/10.1175/JCLI-3228.1

    Article  Google Scholar 

  • Wheeler, M.C., Hendon, H.H.: An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Weather Rev. 132, 1917–1932 (2004)

    Article  Google Scholar 

  • Wu, M.C., Chan, J.C.L.: Upper-level features associated with winter monsoon surges over South China. Mon. Weather Rev. 125, 317–340 (1997)

    Article  Google Scholar 

  • Yoo, C., Lee, S., Feldstein, S.: Mechanisms of Arctic surface air temperature change in response to the madden-Julian oscillation. J. Clim. 25, 5777–5790 (2012)

    Article  Google Scholar 

  • Zhou, S., Miller, A.J.: The interaction of the madden-Julian oscillation and the Arctic oscillation. J. Clim. 18, 143–159 (2005)

    Article  Google Scholar 

  • Zhou, S., L’Heureux, M., Weaver, S., Kumar, A.: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Clim. Dyn. 38, 1458–1471 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2018R1A2A2A05018426) and the KMA Research and Development Program under Grant KMI 2018–01012. We would like to thank the two anonymous reviewers for their careful and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong-Hwan Seo.

Additional information

Responsible Editor: Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Seo, KH., Wu, Q. et al. Combined Effect of the Madden-Julian Oscillation and Arctic Oscillation on Cold Temperature Over Asia. Asia-Pacific J Atmos Sci 55, 75–89 (2019). https://doi.org/10.1007/s13143-018-0091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0091-2

Keywords

Navigation