Skip to main content
Log in

Development of an Observation Processing Package for Data Assimilation in KIAPS

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A new observation processing system, the Korea Institute of Atmospheric Prediction Systems (KIAPS) Package for Observation Processing (KPOP), has been developed to provide optimal observation datasets to the data assimilation (DA) system for the Korean Integrated Model, KIM. This paper presents the KPOP’s conceptual design, how the principal modules have been developed, and some of their preliminary results. Currently, the KPOP is capable of processing almost all observation types used by the Korea Meteorological Administration (KMA) and some new observation types that have a positive impact in other operational centers. We have developed an adaptive bias correction (BC) method that only uses the background of the analysis time and selects the best observations through the consecutive iteration of BC and quality control (QC); it has been verified that this method will be the best suited for the KIAPS DA system until the development of variational BC (VarBC) has been completed. The requirement of considering the radiosonde balloon drift in the DA according to the increase of spatial resolution of the NWP model was accounted for using a balloon drift estimation method that considers the pressure difference and wind speed; thus the distance error was less than 1% in the sample test. Some kind of widely used methods were tested for height adjustment of the SURFACE observation, and a new method for temperature adjustment was outlined that used the correlation between temperature and relative humidity. In addition, three types of map projection were compared: the cubed-sphere (CS), equidistance (ED), and equirectangular (ER) projection for thinning. Data denial experiments were conducted to investigate how the KPOP affected the quality of the analysis fields in the three-dimensional variational data assimilation system (3D-Var). Qualified observations produced by the KPOP had a positive impact by reducing the analysis error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auligné, T., and A. P. McNally, 2007: Interaction between bias correction and quality control. Quart. J. Roy. Meteor. Soc. 133, 643-653.

    Article  Google Scholar 

  • Auligné, T., and A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc. 133, 631-642.

    Article  Google Scholar 

  • Baker, N. L., 1992: Quality control for the navy operational atmospheric database. Wea. Forecasting, 7, 250-261.

    Article  Google Scholar 

  • Bédard, J., S. Laroche, and P. Gauthier, 2015: A geo-statistical observation operator for the assimilation of near-surface wind data. Quart. J. Roy. Meteor. Soc., 141, 2857-2868, doi:10.1002/qj.2569.

    Article  Google Scholar 

  • Bormann, N., K. Salonen, C. Peubey, T. McNally, and C. Lupu, 2012: An overview of the status of the operational assimilation of AMVs at ECMWF. Proc. the 11th International Wind Workshop, Auckland, New Zealand, ECMWF, 20-24.

    Google Scholar 

  • Cameron, J., and W. Bell, 2016: The testing and planned implementation of variational bias correction (VarBC) at the Met Office. Proc. the 20th International TOVS Study Conferences, Wisconsin, USA, ITWG, 139-140.

    Google Scholar 

  • Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamic core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci. 52, 291-307, doi:10.1007/s13143-016-0005-0.

    Article  Google Scholar 

  • Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.

    Article  Google Scholar 

  • Culverwell, I. D., H. W. Lewis, D. Offiler, C. Marquardt, and C. P. Burrows, 2015: The Radio Occultation Processing Package, ROPP. Atmos. Meas. Tech., 8, 1887-1899, doi:10.5194/amt-8-1887-2015.

    Article  Google Scholar 

  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc. 131, 3323-3343.

    Article  Google Scholar 

  • Dennis, J., A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, and H. Tufo, 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl., 19, 225-235, doi:10.1177/1094-342005056108.

    Article  Google Scholar 

  • Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6, 538-547.

    Article  Google Scholar 

  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev. 126, 2287-2299.

    Article  Google Scholar 

  • Eyre, J. R., 1992: A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo. No. 186, 35 pp.

  • Geer, A. J., and Coauthors, 2018: Allsky satellite data assimilation at operational weather forecasting centres (in press). Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.3202.

    Google Scholar 

  • Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc. 127, 1453-1468.

    Article  Google Scholar 

  • Hollingsworth, A., D. B. Shaw, P. Lönnberg, L. Illari, K. Arpe, and A. J. Simmons, 1986: Monitoring of Observation and Analysis Quality by a Data Assimilation System. Mon. Wea. Rev., 114, 861-879.

    Article  Google Scholar 

  • Hong, S-Y, and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.

  • Howard, T. and P. Clark, 2003: Improvement to the Nimrod wind nowcasting scheme over high ground. Forecasting Research Technical Report No. 406, 31 pp.

  • Järvinen, H., and P. Undén, 1997: Observation screening and background quality control in the ECMWF 3DVar data assimilation system. ECMWF Tech. Memo. No. 236, 33 pp.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. Press, 341 pp.

    Google Scholar 

  • Kang, J.-H., H.-J. Song, J.-H. Ha, and H.-J. Han, 2016: A study on the relationship among surface variables to adjust the height of surface temperature for data assimilation. Proc. the American Geophysical Union Fall meeting 2016, San Francisco, USA,. AGU.

    Google Scholar 

  • Kelly, G., J. N. Thépaut, R. Buizza, and C. Cardinali, 2007: The value of observations. I: Data denial experiments for the Atlantic and the Pacific. Quart. J. Roy. Meteor. Soc. 133, 1803-1815.

    Google Scholar 

  • Kwon, H. J.-S. Kang, Y. Jo, and J.-H. Kang, 2015: Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system. Atmos. Meas. Tech. 8, 1259-1273, doi:10.5194/amt-8-1259-2015.

    Article  Google Scholar 

  • Laroche, S., and R. Sarrazin, 2013: Impact of radiosonde balloon drift on numerical weather prediction and verification. Wea. Forecasting, 28, 772-782, doi:10.1175/WAF-D-12-00114.1.

    Article  Google Scholar 

  • Lee, S., S. Kim, H.-W. Chun, J.-H. Kim, and J.-H. Kang, 2014: Preprocessing and bias correction for AMSUA radiance data based on statistical methods. Atmosphere, 24, 491-502, doi:10.14191/Atmos. 2014.24.4.491 (in Korean with English abstract).

    Article  Google Scholar 

  • Lorenc, A. C., and O. Hammon, 1988: Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Quart. J. Roy. Meteor. Soc., 114, 515-543.

    Article  Google Scholar 

  • McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411-3423.

    Article  Google Scholar 

  • Ochotta, T., C. Gebhardt, D. Saupe, and W. Wergen, 2005: Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Roy. Meteor. Soc. 131, 3427-3437.

    Article  Google Scholar 

  • Rabier, F., 2011: Pre-and Post-Processing in Data Assimilation. Preprints, Seminar on Data assimilation for atmosphere and ocean, Reading, UK, ECMWF, 45-59.

    Google Scholar 

  • Saunders, R. W., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc. 125, 1407-1425.

    Article  Google Scholar 

  • Seidel, D. J., B. Sun, M. Pettey, and A. Reale, 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, doi:10.1029/2010JD014891.

    Article  Google Scholar 

  • Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev. 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.

    Article  Google Scholar 

  • Song, H.-J., and I.-H. Kwon, and J. Kim, 2017a: Characteristics of a spectral inverse of the Laplacian using spherical harmonic functions on a cubed-sphere grid for background error covariance modeling, Mon. Wea. Rev., 145, 307-322, doi:10.1175/MWR-D-16-0134.1.

    Article  Google Scholar 

  • Song, H.-J., J. Kwun, I.-H. Kwon, J.-H. Ha, J.-H. Kang, S. Lee, H.-W. Chun, and S. Lim, 2017b: The impact of the nonlinear balance equation on a 3D-Var cycle during an Australian-winter month as compared with the regressed wind-mass balance, Quart. J. Roy. Meteor. Soc. 143, 2036-2049, doi:10.1002/qj.3036.

    Article  Google Scholar 

  • Song, H.-J., S. Shin, J.-H. Ha, and S. Lim S, 2017c: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res. 122, 12,226-12,244, doi:10.1002/2017JD027598.

    Google Scholar 

  • Song, H.-J., J.-H. Ha, I.-H. Kwon, J. Kim, and J. Kwun, 2018: Multiresolution hybrid data assimilation core on a cubed-sphere grid (HybDA) (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0018-y.

  • Tenenbaum, J., 1996: Jet Stream Winds: Comparisons of aircraft observations with analysis. Wea. Forecasting, 11, 188-197.

    Article  Google Scholar 

  • Verspeek, J., A. Stoffelen, M. Portabella, H. Bonekamp, C. Anderson, and J. Figa-Saldana, 2010: Validation and calibration of ASCAT using CMOD5.n. IEEE Trans. Geosci. Remote Sens., 48, 386-395, doi: 10.1109/TGRS.2009.2027896.

    Article  Google Scholar 

  • Warrick, F., 2015: Options for filling the LEO-GEO AMV Coverage Gap. NWP SAF Tech. Doc., NWP SAF-MO-TR-030, 21 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeon-Ho Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JH., Chun, HW., Lee, S. et al. Development of an Observation Processing Package for Data Assimilation in KIAPS. Asia-Pacific J Atmos Sci 54 (Suppl 1), 303–318 (2018). https://doi.org/10.1007/s13143-018-0030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0030-2

Key words

Navigation