The Korean Integrated Model (KIM) System for Global Weather Forecasting

  • Song-You HongEmail author
  • Young Cheol Kwon
  • Tae-Hun Kim
  • Jung-Eun Esther Kim
  • Suk-Jin Choi
  • In-Hyuk Kwon
  • Junghan Kim
  • Eun-Hee Lee
  • Rae-Seol Park
  • Dong-Il Kim


The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom’s Meteorological Office’s unified model (UM) in 2010. The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020.

Key words

Numerical weather prediction global forecast system WRF GRIMs KIM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACEC (Advanced Computing Evaluation Committee), 2016: NGGPS phase-2 Benchmarks and Software Evaluation. AVEC Rep., 13 pp.Google Scholar
  2. Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Proc. Eighth Conference on Numerical Weather Prediction, Baltimore, USA, Amer. Meteor. Soc. 726-733.Google Scholar
  3. Bae, S.-Y., S.-Y. Hong, and K.-S. Lim, 2016: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research and forecasting Model. Adv. Meteor., 2016, 5070154, doi:10.1155/2016/5070154.CrossRefGoogle Scholar
  4. Baek, S., 2017: A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10. 1002/2017MS000994.CrossRefGoogle Scholar
  5. Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 1540-1559, doi:10.1002/qj.1899.CrossRefGoogle Scholar
  6. Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 2532-2559, doi:10.1175/MWR-D-14-00354.1.Google Scholar
  7. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.Google Scholar
  8. Cheong, H.-B., 2006: A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299-1315.CrossRefGoogle Scholar
  9. Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: an update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739-759, doi:10.1175/2010-JAS3552.1.Google Scholar
  10. Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast. J. Geophys. Res., 120, 12445-12457, doi:10.1002/2015JD024230.Google Scholar
  11. Choi, H.-J., S.-J. Choi, M.-S. Koo, J.-E. Kim, Y. C. Kwon, and S.-Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res., 122, 10669-10678, doi:10.1002/2017JD026696.CrossRefGoogle Scholar
  12. Choi, H.-J., J.-Y. Han, M.-S. Koo, H.-Y. Chun, Y.-H. Kim, and S.-Y. Hong, 2018: Effects of non-orographic gravity wave drag on seasonal and medium-range predictions in a global model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0023-1.Google Scholar
  13. Choi, S.-J., 2018: Structure of Eigenvalues in the advection-diffusion equation by the spectral element method on a cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0020-4.Google Scholar
  14. Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.CrossRefGoogle Scholar
  15. Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.CrossRefGoogle Scholar
  16. Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299-3310.CrossRefGoogle Scholar
  17. Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445-1461, doi:10.1002/qj.2054.CrossRefGoogle Scholar
  18. Dennis, J., J. Edwards, K. J. Evans, O. N. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worly, 2011: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform Comput. Appl., 26, 74-89, doi: 10.1177/1094342011428142, doi:10.1177/1094342011428142.CrossRefGoogle Scholar
  19. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, D22, doi: 10.1029/2002JD003296.CrossRefGoogle Scholar
  20. Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu, 2013: Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA). SIAM J. Sci. Comput., 35, B1162-B1194, doi: 10.1137/120876034.CrossRefGoogle Scholar
  21. Govett, M., and Coauthors, 2017: Parallelization and performance of the NIM weather model on CPU, GPU, and MIC processors. Bull. Amer. Meteor. Soc., 98, 2201-2213, doi:10.1175/BAMS-D-15-00278.1.CrossRefGoogle Scholar
  22. Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.CrossRefGoogle Scholar
  23. Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.CrossRefGoogle Scholar
  24. Haywood, J., 2009: The strategy for aerosols and dust in climate, weather and air quality forecasting. MOSAC-14, Paper No. 14.11, 15 pp.Google Scholar
  25. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481-1496, doi:10.1002/qj.665.CrossRefGoogle Scholar
  26. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.Google Scholar
  27. Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6-ES9, doi:10.1175/2011BAMS3224.1.CrossRefGoogle Scholar
  28. Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104, doi:10.1007/s13143-014-0029-2.CrossRefGoogle Scholar
  29. Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0013-3.Google Scholar
  30. Hong, S.-Y., J. Duhdia, and S.-H. Chen, 2004: A revised approach to icemicrophysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103-120.CrossRefGoogle Scholar
  31. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.CrossRefGoogle Scholar
  32. Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523-531.CrossRefGoogle Scholar
  33. Hong, S.-Y., and Coauthors, 2013a: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.CrossRefGoogle Scholar
  34. Hong, S.-Y., M. Koo, J. Jang, J. Esther Kim, H. Park, M. Joh, J. Kang, and T. Oh, 2013b: An evaluation of the system software dependency of a global spectral model. Mon. Wea. Rev., 141, 4165-4172, doi:10.1175/MWR-D-12-00352.1.CrossRefGoogle Scholar
  35. Iacono, M.-J., J. S. Delamere, E. J. Mlawer, M. W. Shepherd, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculation with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.CrossRefGoogle Scholar
  36. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univsersity Press, 341 pp.Google Scholar
  37. Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335-342,<0335:DOTNGD>2.0.CO;2.CrossRefGoogle Scholar
  38. Kanamitsu, M., K. Tada, T. Kuo, N. Sato and S. Isa, 1983: Description of the JMA operational spectral model. J. Meteor. Soc. Japan, 61, 812-828.CrossRefGoogle Scholar
  39. Kang, H.-G., and H.-B. Cheong, 2017: An efficient implementation of a high-order filter for a cubed-sphere spectral element model. J. Comput. Phys., 332, 66-82, doi:10.1016/ Scholar
  40. Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2.Google Scholar
  41. Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.CrossRefGoogle Scholar
  42. Kim, J, Y. C. Kwon, and T.-H. Kim, 2018a: A scalable high-performance I/O System for a numerical weather forecast model on the cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0021-3.Google Scholar
  43. Kim, K.-H., P.-S. Shim, S. Shin, and J. Kim, 2018b: A simple method to find a neighboring grid point on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0027-x.Google Scholar
  44. Kim, S.-Y., and S.-Y. Hong, 2018: The use of partial cloudiness in a bulk cloud microphysics scheme: Concept and 2D results (in press). J. Atmos. Sci., doi:10.1175/JAS-D-17-0234.1.Google Scholar
  45. Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875-1902.CrossRefGoogle Scholar
  46. Koo, M.-S., and S.-Y. Hong, 2014: Stochastic representation of dynamic model tendency: Formulation and preliminary results. Asia-Pac. J. Atmos. Sci., 50, 497-506, doi:10.1007/s13143-014-0039-0.CrossRefGoogle Scholar
  47. Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land surface modeling of KIAPS based on the Noah land surface model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.CrossRefGoogle Scholar
  48. Koo, M.-S., H.-J. Choi, and J.-Y. Han, 2018: A parameterization of turbulentscale orographic form drag in a global atmospheric model. AOGS 15th Annual Meeting, Honolulu, Hawaii, United States, AS20-A039 [Available online at].Google Scholar
  49. Kwon, I.-H., S. English, W. Bell, R. Potthast, A. Collard, and B. Ruston, 2018: Assessment of progress and status of data assimilation in numerical weather prediction. Bull. Amer. Soc., 99, ES75-ES79, doi:10.1175/BAMS-D-17-0266.1.CrossRefGoogle Scholar
  50. Kwon, I.-H., and Coauthors, 2018: Development of operational hybrid data assimilation system at KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0029-8.Google Scholar
  51. Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.CrossRefGoogle Scholar
  52. Lee, E.-H., E. Lee, R. Park, Y.-C. Kwon, and S.-Y. Hong, 2018: Impact of turbulent Mmixing in the stratocumulus-topped boundary layer on numerical weather prediction (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0024-0.Google Scholar
  53. Lim, K.-S., S.-Y. Hong, J.-H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolution. Wea. Forecasting, 29, 1143-1154, doi:10.1175/WAF-D-13-00143.1.CrossRefGoogle Scholar
  54. Lin, S.-J., L. Harris, X. Chen. W. Yao, and J. Chai, 2017: Colliding modons: A nonlinear test for the evaluation of global dynamical cores. J. Adv. Model. Earth Syst., 9, 2483-2492, doi:10.1002/2017MS000965.CrossRefGoogle Scholar
  55. Long, P. E., 1984: A general unified similarity theory for the calculation of turbulent fluxes in numerical weather prediction models for unstable conditions. NCEP Office Note 302, 30 pp.Google Scholar
  56. Long, P. E., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note 321, 24 pp.Google Scholar
  57. Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212-229, doi:10.1175/MWR-D-14-00195.1.CrossRefGoogle Scholar
  58. Mahrt, L., 2008: Bulk formulation of surface fluxes extended to weakwind stable conditions. Quart. J. Roy. Meteorol. Soc., 134, 1-10.CrossRefGoogle Scholar
  59. Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgardner, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and highresolution tests. Mon. Wea. Rev., 130, 319-338.CrossRefGoogle Scholar
  60. McFarlane, N. A., 1987: The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere. J. Atmos. Sci., 44, 1775-1800.CrossRefGoogle Scholar
  61. McNally, T., M. Bonvita, and J.-N. The ìpaut, 2014: The role of satellite data in the forecasting of Hurricane Sandy. Mon. Wea. Rev., 142, 634-646, doi:10.1175/MWR-D-13-00170.1.CrossRefGoogle Scholar
  62. Park, H., S.-Y. Hong, H.-B. Cheong, and M.-S. Koo, 2013: A double Fourier series (DFS) dynamic core in a global atmospheric model with full physics. Mon. Wea. Rev., 141, 3052-3061, doi:10.1175/MWR-D-12-00270.1.CrossRefGoogle Scholar
  63. Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 144, 1219-1229, doi:10.1175/MWR-D-15-0273.1.CrossRefGoogle Scholar
  64. Rabier, F., 2005: Overview of global data assimilation developments in numerical weather prediction centres. Quart. J. Roy. Meteor. Soc., 131, 3215-3233, doi:10.1256/qj.05.129.CrossRefGoogle Scholar
  65. Randall, D. A., R. Heikes, and T. Ringer, 2000: General Circulation Model Development. Academic Press, 416 pp.Google Scholar
  66. Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev., 108, 1279-1292.CrossRefGoogle Scholar
  67. Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136-144.CrossRefGoogle Scholar
  68. Shin, H. H., and S.-Y. Hong, 2013: Analysis on resolved and parameterized vertical transport in convective boundary layers at gray-zone resolution. J. Atmos. Sci., 70, 3248-3261, doi:10.1175/JAS-D-12-0290.1.CrossRefGoogle Scholar
  69. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.CrossRefGoogle Scholar
  70. Shin, S., and Coauthors, 2018: Real data assimilation using the Local Ensemble Transform Kalman Filter (LETKF) system for a global nonhydrostatic NWP model on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi: 10.1007/s13143-018-0022-2.Google Scholar
  71. Song, H.-J., and I.-H. Kwon, 2015: Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation system. Mon. Wea. Rev., 143, 2581-2599, doi:10.1175/MWR-D-14-00089.1.CrossRefGoogle Scholar
  72. Song, H.-J., S. Shin, J.-H. Ha, and S. Lim, 2017: The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions. J. Geophys. Res., 122, 12226-12244, doi:10.1002/2017JD027598.Google Scholar
  73. Song, H.-J., J.-H. Ha, I.-H. Kwon, J. Kim, and J. Kwun, 2018: Multiresolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0018-y.Google Scholar
  74. Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019-3032.CrossRefGoogle Scholar
  75. Song, H.-J., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.Google Scholar
  76. Song, H.-J., J. B. Klemp, M.G. Duda, L.D. Fowler, S. Park, and T.D. Ringler, 2012: A multi-scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon. Wea. Rev., 140, 3090-3105, doi:10.1175/MWR-D-11-00215.1.CrossRefGoogle Scholar
  77. Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92-108.CrossRefGoogle Scholar
  78. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800.CrossRefGoogle Scholar
  79. Tiedtke, M., 1993: Representation of clouds in large-scale models, Mon. Wea. Rev., 121, 3040-3061.CrossRefGoogle Scholar
  80. Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357-400.CrossRefGoogle Scholar
  81. Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteorol. Soc., 125, 2401-2426.CrossRefGoogle Scholar
  82. Warner, C. D. and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857.CrossRefGoogle Scholar
  83. Wedi, N. P., M. Hamrud, and G. Mozdzynski, 2013: A fast spherical harmonics transform for global NWP and climate models. Mon. Wea. Rev., 141, 3450-3461, doi:10.1175/MWR-D-13-00016.1.CrossRefGoogle Scholar
  84. Wilson, D. R. and D. Gregory, 2003: The behaviour of large-scale model cloud schemes under idealized forcing scenarios. Quart. J. Roy. Meteorol. Soc., 129, 967-986.CrossRefGoogle Scholar
  85. Winton, M., 2000: A Reformulated Three-Layer Sea Ice Model. J. Atmos.Oceanic Technol., 17, 525-531.CrossRefGoogle Scholar
  86. Zängl, G., D. Reinert, M.-P. Ripodas, and M. Baldauf, 2014: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563-579, doi:10.1002/qj.2378.CrossRefGoogle Scholar
  87. Zeng, X., Z. Wang, and A. Wang, 2012: Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions. J. Hydrometeor., 13, 1359-1370, doi:10.1175/JHM-D-11-0117.1.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Song-You Hong
    • 1
    • 2
    Email author
  • Young Cheol Kwon
    • 1
  • Tae-Hun Kim
    • 1
  • Jung-Eun Esther Kim
    • 1
  • Suk-Jin Choi
    • 1
  • In-Hyuk Kwon
    • 1
  • Junghan Kim
    • 1
  • Eun-Hee Lee
    • 1
  • Rae-Seol Park
    • 1
  • Dong-Il Kim
    • 1
  1. 1.Korea Institute of Atmospheric Prediction Systems (KIAPS)SeoulKorea
  2. 2.Korea Institute of Atmospheric Prediction Systems (KIAPS)Seoul 07071Korea

Personalised recommendations