Asia-Pacific Journal of Atmospheric Sciences

, Volume 53, Issue 4, pp 511–518 | Cite as

Satellite bulk tropospheric temperatures as a metric for climate sensitivity

Article

Abstract

We identify and remove the main natural perturbations (e.g. volcanic activity, ENSOs) from the global mean lower tropospheric temperatures (T LT ) over January 1979 - June 2017 to estimate the underlying, potentially human-forced trend. The unaltered value is +0.155 K dec−1 while the adjusted trend is +0.096 K dec−1, related primarily to the removal of volcanic cooling in the early part of the record. This is essentially the same value we determined in 1994 (+0.09 K dec−1, Christy and McNider, 1994) using only 15 years of data. If the warming rate of +0.096 K dec−1 represents the net T LT response to increasing greenhouse radiative forcings, this implies that the T LT tropospheric transient climate response (ΔT LT at the time CO2 doubles) is +1.10 ± 0.26 K which is about half of the average of the IPCC AR5 climate models of 2.31 ± 0.20 K. Assuming that the net remaining unknown internal and external natural forcing over this period is near zero, the mismatch since 1979 between observations and CMIP-5 model values suggests that excessive sensitivity to enhanced radiative forcing in the models can be appreciable. The tropical region is mainly responsible for this discrepancy suggesting processes that are the likely sources of the extra sensitivity are (a) the parameterized hydrology of the deep atmosphere, (b) the parameterized heat-partitioning at the oceanatmosphere interface and/or (c) unknown natural variations.

Keywords

Climate sensitivity satellite temperatures volcano El Niño 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi, F., and Coauthors, 2016: New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, doi: 10.1126/Science.aad5456.Google Scholar
  2. Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. T. F. Stocker et al. Eds., Cambridge University Press, 867–952.Google Scholar
  3. Choi, Y.-S., H. Cho, C.-H. Ho, R. S. Lindzen, S. K. Park, and W. Yu, 2014: Influence of non-feedback variations of radiation on the determination of climate feedback. Theor. Appl. Climatol., 115, 355–364, doi:10.1007/ s00704-013-0998-6.CrossRefGoogle Scholar
  4. Christy, J. R., 2017: Lower and mid-tropospheric temperature. [in State of the Climate 2016]. Bull. Amer. Meteor. Soc., 98, 16, doi:10.1175/ 2017BAMSStateoftheClimate.1.Google Scholar
  5. Christy, J. R., and S. Drouilhet, 1994: Variability in daily, zonal mean lowerstratospheric temperatures. J. Climate, 7, 106–120.CrossRefGoogle Scholar
  6. Christy, J. R., and R. T. McNider, 1994: Satellite greenhouse signal. Nature, 367, 325.CrossRefGoogle Scholar
  7. Christy, J. R., W. B. Norris, and R. T. McNider, 2009: Surface temperature variations in East Africa and possible causes. J. Climate, 22, 3342–3356, doi:10.1175/2008JCLI2726.1.CrossRefGoogle Scholar
  8. Christy, J. R., B. Hermon, R. Pielke Sr., P. Klotzbach, R. T. McNider, J. J. Hnilo, R. W. Spencer, T. Chase, and D. Douglass, 2010: What do observational datasets say about modeled tropospheric temperature trends since 1979? Remote Sens., 2, 2148–2169, doi:10.3390/rs2092148.CrossRefGoogle Scholar
  9. Christy, J. R., R. W. Spencer, and W. B. Norris, 2011: The role of remote sensing in monitoring global bulk tropospheric temperatures. Int. J. Remote Sens., 32, 671–685, doi:10.1080/01431161.2010.517803.CrossRefGoogle Scholar
  10. Collins, M., and Coauthors, 2013: Long term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. T. F. Stocker et al. Eds., Cambridge University Press, 1029–1136.Google Scholar
  11. Flato, G., and Coauthors, 2013: Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. T. F. Stocker et al. Eds., Cambridge University Press, 741–866.Google Scholar
  12. Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and radiative forcing. In Climate Change 2007: The Physical Science Basis. S. Solomon et al. Eds., Cambridge University Press, 130–234.Google Scholar
  13. Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde atmospheric temperature products for assessing climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res., 110, D22101, doi:10.1029/2005JD006169.CrossRefGoogle Scholar
  14. Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 8108–8131, doi:10.1175/jcli-d-11-00668.1.CrossRefGoogle Scholar
  15. Hope, A. P., T. P. Canty, R. J. Salawitch, W. R. Tribett, and B. F. Bennett, 2017: Forecasting global warming. In Paris Climate Agreement: Beacon of Hope. R. J. Salawitch et al. Eds., Springer Climate, 51–113, doi:10.1007/978-3-319-46939-3_2.CrossRefGoogle Scholar
  16. Jiang, J. H., and Coauthors, 2012: Evaluations of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D1410, doi:10.1029/2011JD017237.Google Scholar
  17. Lindzen, R. S., and Y.-S. Choi, 2011: On the observational determination of climate sensitivity and its implications. Asia-Pac. J. Atmos. Sci., 47, 377–390, doi:10.1007/s13143-011-0023-x.CrossRefGoogle Scholar
  18. Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanography, 58, 35–44, doi:10.1023/A:1015820616384.CrossRefGoogle Scholar
  19. McKitrick, R. R., and T. J. Vogelsang, 2014: HAC robust trend comparisons among climate series with possible level shifts. Environmetrics, 25, 528–547, doi:10.1002/env.2294.CrossRefGoogle Scholar
  20. McNider, R. T., G. J. Steeneveld, A. A. M. Holtslag, R. A. Pielke Sr., S. Mackaro, A. Pour-Biazar, J. Walters, U. Nair, and J. Christy, 2012: Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J. Geophys. Res., 117, doi10.1029/2012JD017578.Google Scholar
  21. Mears, C. A., and F. J. Wentz, 2009: Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 1040–1056, doi:10.1175/2008JTECHA1176.1.CrossRefGoogle Scholar
  22. Mears, C. A., and F. J. Wentz, 2017: A satellite-derived lower tropospheric atmospheric temperature dataset using an optimized adjustment fro diurnal effects. J. Climate, 30, 7695–7718, doi:10.1175/JCLI-D-16-0768.1.CrossRefGoogle Scholar
  23. Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with interdecadal Pacific Oscillation. J. Climate, 26, 7298–7310, doi:10.1175/JCLI-D-12-00548.1.CrossRefGoogle Scholar
  24. Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. T. F. Stocker et al. Eds., Cambridge University Press, 659–740.Google Scholar
  25. National Academy of Sciences, 2003}: Cloud, water vapor, and lapse rate feedbacks. In Understanding Climate Change Feedbacks. National Research Council Ed., The National Academy Press, 166 ppGoogle Scholar
  26. NOAA, 2017 cited: sstoi.indices. [Available online at http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices.]Google Scholar
  27. NOAA, 2017 cited: sstoi.atl.indices. [Available online at http://www.cpc.ncep.noaa.gov/data/indices/sstoi.atl.indices.]Google Scholar
  28. Pielke Sr., R. A., and Coauthors, 2007: Unresolved issues with the assessment of multidecadal global land surface temperature trends. J. Geophys. Res., 112, doi:10.1029/2006JD008229.Google Scholar
  29. Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185–189, doi:10. 1038/ngeo2098.CrossRefGoogle Scholar
  30. Scafetta, N., 2013: Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth Sci. Rev., 126, 321–357, doi:10.1016/j.earscirev.2013.08.008.CrossRefGoogle Scholar
  31. Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65-70 years. Nature, 367, 723–726, doi:10. 1038/367723a0.CrossRefGoogle Scholar
  32. Sherwood, S. C., and N. Nishant, 2015: Atmospheric changes through 2012 as shown by iteratively homogenized radiosonde temperature and wind data (IUKv2). Environ. Res. Lett., 10, 054007, doi:10.1088/1748-9326/10/5/054007.CrossRefGoogle Scholar
  33. Spencer, R. W., and W. D. Braswell, 2010: On the diagnosis of radiative feedback in the presence of unknown radiative forcing. J. Geophys. Res., 115, D16109, doi:10.1029/2009JD013371.CrossRefGoogle Scholar
  34. pencer, R. W., J. R. Christy, and W. D. Braswell, 2017: UAH Version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci., 53, 121–130, doi:10.1007/s13143-017-0010-y.CrossRefGoogle Scholar
  35. Stocker, T. F., and Coauthors, 2013: Technical Summary. In Climate Change 2013: The Physical Science Basis. T. F. Stocker et al. Eds., Cambridge University Press, 33–115.Google Scholar
  36. Su, H., and Coauthors, 2017: Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nat. Commun., 8, 15771, doi:10.1038/ncomms15771.CrossRefGoogle Scholar
  37. van Oldenbrogh, G. J., 2016: Climate Data Explorer. [Available online at http://climexp.knmi.nl/selectfield_co2.cgi?someone@somewhere.]Google Scholar
  38. Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in the extended multivariate ENSO index. Intl. J. Climatol., 31, 1074–1087, doi:10.1002/joc.2336.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Earth System Science CenterThe University of Alabama in HuntsvilleAlabamaUSA
  2. 2.Earth System Science CenterThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations