UAH Version 6 global satellite temperature products: Methodology and results

Abstract

Version 6 of the UAH MSU/AMSU global satellite temperature dataset represents an extensive revision of the procedures employed in previous versions of the UAH datasets. The two most significant results from an end-user perspective are (1) a decrease in the global-average lower tropospheric temperature (LT) trend from +0.14°C decade−1 to +0.11°C decade−1 (Jan. 1979 through Dec. 2015); and (2) the geographic distribution of the LT trends, including higher spatial resolution, owing to a new method for computing LT. We describe the major changes in processing strategy, including a new method for monthly gridpoint averaging which uses all of the footprint data yet eliminates the need for limb correction; a new multi-channel (rather than multi-angle) method for computing the lower tropospheric (LT) temperature product which requires an additional tropopause (TP) channel to be used; and a new empirical method for diurnal drift correction. We show results for LT, the midtroposphere (MT, from MSU2/AMSU5), and lower stratosphere (LS, from MSU4/AMSU9). A 0.03°C decade−1 reduction in the global LT trend from the Version 5.6 product is partly due to lesser sensitivity of the new LT to land surface skin temperature (est. 0.01°C decade−1), with the remainder of the reduction (0.02°C decade−1) due to the new diurnal drift adjustment, the more robust method of LT calculation, and other changes in processing procedures.

This is a preview of subscription content, log in to check access.

References

  1. Adler, R. F., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeorol., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Article  Google Scholar 

  2. Christy, J. R., R. W. Spencer, and W. D. Braswell, 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Ocean. Tech., 17, 1153–1170, doi:10.1175/1520-0426(2000) 017<1153:MTTDCA>2.0.CO;2.

    Article  Google Scholar 

  3. Conrath, B. J., 1972: Vertical resolution of temperature profiles obtained from remote radiation measurements. J. Atmos. Sci., 29, 1262–1271, doi:10.1175/1520-0469(1972)029<1262:VROTPO>2.0.CO;2.

    Article  Google Scholar 

  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828

    Article  Google Scholar 

  5. Free, M., and D. J. Seidel, 2005: Causes of differing temperature trends in radiosonde upper air datasets. J. Geophys. Res., 110, D07101, doi: 10.1029/2004JD005481.

    Google Scholar 

  6. Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res., 110, D22101, doi:10.1029/2005JD006169

    Article  Google Scholar 

  7. Fu, Q., C. M. Johanson, S. G. Warren, and D. J. Seidel, 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 55–58, doi:10.1038/nature02524.

    Article  Google Scholar 

  8. Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 1377–1403, doi:10. 1175/JCLI4050.1.

    Article  Google Scholar 

  9. Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 8108–8131, doi:10.1175/JCLI-D-11-00668.1.

    Article  Google Scholar 

  10. Lu, Q., and W. Bell, 2014: Characterizing channel center frequencies in AMSU-A and MSU Microwave Sounding Instruments. J. Atmos. Ocean. Tech., 31, 1713–1732, doi:10.1175/JTECH-D-13-00136.1.

    Article  Google Scholar 

  11. Mears, C. A., M. C. Schabel, and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 3650–3664, doi:10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2.

    Article  Google Scholar 

  12. Mears, C. A., F. J. Wentz, and P. W. Thorne, 2012: Assessing the value of Microwave Sounding Unit radiosonde comparisons in ascertaining errors in climate data records of tropospheric temperatures. J. Geophys. Res., 117, D19103, doi:10.1029/2012JD017710.

  13. Robel, J., and A. Graumann, 2014: NOAA KLM User’s Guide with NOAA-N, N Prime, and Metop Supplements. NOAA/NESDIS/NCDC, Asheville, NC,2530 pp.

    Google Scholar 

  14. Po-Chedley, S., and Q. Fu, 2012: A bias in the midtropospheric channel warm target factor on the NOAA-9 Microwave Sounding Unit. J. Atmos. Ocean. Tech., 29, 646–652, doi:10.1175/JTECH-D-11-00147.1.

    Article  Google Scholar 

  15. Po-Chedley, S., T. J. Thorsen, and Q. Fu, 2015: Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J. Climate, 28, 2274–2290, doi:10.1175/JCLI-D-13-00767.1.

    Article  Google Scholar 

  16. Sherwood, S. C., and N. Nishant, 2015: Atmospheric changes through 2012 as shown by iteratively homogenised radiosonde temperature and wind data (IUKv2). Env. Res. Lett., 10, 054007, doi:10.1088/1748-9326/10/5/054007

    Article  Google Scholar 

  17. Spencer, R. W., and J. R. Christy, 1990: Precise monitoring of global temperature trends from satellites. Science, 247, 1558–1562, doi:10. 1126/science.247.4950.1558

    Article  Google Scholar 

  18. Spencer, R. W., and J. R. Christy, 1992a: Precision and radiosonde validation of satellite gridpoint temperature anomalies, Part I: MSU channel 2. J. Climate, 5, 847–857, doi:10.1175/1520-0442(1992)005<0847:PARVOS> 2.0.CO;2.

    Article  Google Scholar 

  19. Spencer, R. W., and J. R. Christy, 1992b: Precision and radiosonde validation of satellite gridpoint temperature anomalies, Part II: A tropospheric retrieval and trends during 1979-90. J. Climate, 5, 858–866, doi:10. 1175/1520-0442(1992)005<0858:PARVOS>2.0.CO;2.

    Article  Google Scholar 

  20. Spencer, R. W., and J. R. Christy, 1993: Precision lower stratospheric temperature monitoring with the MSU: Technique, validation, and results 1979-91. J. Climate, 6, 1301–1326, doi:10.1175/1520-0442(1993)006<1194: PLSTMW>2.0.CO;2.

    Article  Google Scholar 

  21. Titchner, H. A., P. W. Thorne, M. P. McCarthy, S. F. B. Tett, L. Haimberger, and D. E. Parker, 2009: Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. J. Climate, 22, 465–485, doi:10.1175/2008JCLI2419.1.

    Article  Google Scholar 

  22. Wentz, F. J., and M. Schabel, 1998: Effects of orbit decay on satellitederived lower-tropospheric temperature trends. Nature, 394, 661–664, doi:10.1038/29267

    Article  Google Scholar 

  23. Zou, C.-Z., and W. Wang, 2011: Inter-satellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roy W. Spencer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spencer, R.W., Christy, J.R. & Braswell, W.D. UAH Version 6 global satellite temperature products: Methodology and results. Asia-Pacific J Atmos Sci 53, 121–130 (2017). https://doi.org/10.1007/s13143-017-0010-y

Download citation

Key words

  • Global temperature
  • satellites
  • climate change