Asia-Pacific Journal of Atmospheric Sciences

, Volume 53, Issue 1, pp 121–130 | Cite as

UAH Version 6 global satellite temperature products: Methodology and results

  • Roy W. Spencer
  • John R. Christy
  • William D. Braswell
Article

Abstract

Version 6 of the UAH MSU/AMSU global satellite temperature dataset represents an extensive revision of the procedures employed in previous versions of the UAH datasets. The two most significant results from an end-user perspective are (1) a decrease in the global-average lower tropospheric temperature (LT) trend from +0.14°C decade−1 to +0.11°C decade−1 (Jan. 1979 through Dec. 2015); and (2) the geographic distribution of the LT trends, including higher spatial resolution, owing to a new method for computing LT. We describe the major changes in processing strategy, including a new method for monthly gridpoint averaging which uses all of the footprint data yet eliminates the need for limb correction; a new multi-channel (rather than multi-angle) method for computing the lower tropospheric (LT) temperature product which requires an additional tropopause (TP) channel to be used; and a new empirical method for diurnal drift correction. We show results for LT, the midtroposphere (MT, from MSU2/AMSU5), and lower stratosphere (LS, from MSU4/AMSU9). A 0.03°C decade−1 reduction in the global LT trend from the Version 5.6 product is partly due to lesser sensitivity of the new LT to land surface skin temperature (est. 0.01°C decade−1), with the remainder of the reduction (0.02°C decade−1) due to the new diurnal drift adjustment, the more robust method of LT calculation, and other changes in processing procedures.

Key words

Global temperature satellites climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R. F., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeorol., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.CrossRefGoogle Scholar
  2. Christy, J. R., R. W. Spencer, and W. D. Braswell, 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Ocean. Tech., 17, 1153–1170, doi:10.1175/1520-0426(2000) 017<1153:MTTDCA>2.0.CO;2.CrossRefGoogle Scholar
  3. Conrath, B. J., 1972: Vertical resolution of temperature profiles obtained from remote radiation measurements. J. Atmos. Sci., 29, 1262–1271, doi:10.1175/1520-0469(1972)029<1262:VROTPO>2.0.CO;2.CrossRefGoogle Scholar
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828CrossRefGoogle Scholar
  5. Free, M., and D. J. Seidel, 2005: Causes of differing temperature trends in radiosonde upper air datasets. J. Geophys. Res., 110, D07101, doi: 10.1029/2004JD005481.Google Scholar
  6. Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res., 110, D22101, doi:10.1029/2005JD006169CrossRefGoogle Scholar
  7. Fu, Q., C. M. Johanson, S. G. Warren, and D. J. Seidel, 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 55–58, doi:10.1038/nature02524.CrossRefGoogle Scholar
  8. Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 1377–1403, doi:10. 1175/JCLI4050.1.CrossRefGoogle Scholar
  9. Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 8108–8131, doi:10.1175/JCLI-D-11-00668.1.CrossRefGoogle Scholar
  10. Lu, Q., and W. Bell, 2014: Characterizing channel center frequencies in AMSU-A and MSU Microwave Sounding Instruments. J. Atmos. Ocean. Tech., 31, 1713–1732, doi:10.1175/JTECH-D-13-00136.1.CrossRefGoogle Scholar
  11. Mears, C. A., M. C. Schabel, and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 3650–3664, doi:10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2.CrossRefGoogle Scholar
  12. Mears, C. A., F. J. Wentz, and P. W. Thorne, 2012: Assessing the value of Microwave Sounding Unit radiosonde comparisons in ascertaining errors in climate data records of tropospheric temperatures. J. Geophys. Res., 117, D19103, doi:10.1029/2012JD017710.Google Scholar
  13. Robel, J., and A. Graumann, 2014: NOAA KLM User’s Guide with NOAA-N, N Prime, and Metop Supplements. NOAA/NESDIS/NCDC, Asheville, NC,2530 pp.Google Scholar
  14. Po-Chedley, S., and Q. Fu, 2012: A bias in the midtropospheric channel warm target factor on the NOAA-9 Microwave Sounding Unit. J. Atmos. Ocean. Tech., 29, 646–652, doi:10.1175/JTECH-D-11-00147.1.CrossRefGoogle Scholar
  15. Po-Chedley, S., T. J. Thorsen, and Q. Fu, 2015: Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J. Climate, 28, 2274–2290, doi:10.1175/JCLI-D-13-00767.1.CrossRefGoogle Scholar
  16. Sherwood, S. C., and N. Nishant, 2015: Atmospheric changes through 2012 as shown by iteratively homogenised radiosonde temperature and wind data (IUKv2). Env. Res. Lett., 10, 054007, doi:10.1088/1748-9326/10/5/054007CrossRefGoogle Scholar
  17. Spencer, R. W., and J. R. Christy, 1990: Precise monitoring of global temperature trends from satellites. Science, 247, 1558–1562, doi:10. 1126/science.247.4950.1558CrossRefGoogle Scholar
  18. Spencer, R. W., and J. R. Christy, 1992a: Precision and radiosonde validation of satellite gridpoint temperature anomalies, Part I: MSU channel 2. J. Climate, 5, 847–857, doi:10.1175/1520-0442(1992)005<0847:PARVOS> 2.0.CO;2.CrossRefGoogle Scholar
  19. Spencer, R. W., and J. R. Christy, 1992b: Precision and radiosonde validation of satellite gridpoint temperature anomalies, Part II: A tropospheric retrieval and trends during 1979-90. J. Climate, 5, 858–866, doi:10. 1175/1520-0442(1992)005<0858:PARVOS>2.0.CO;2.CrossRefGoogle Scholar
  20. Spencer, R. W., and J. R. Christy, 1993: Precision lower stratospheric temperature monitoring with the MSU: Technique, validation, and results 1979-91. J. Climate, 6, 1301–1326, doi:10.1175/1520-0442(1993)006<1194: PLSTMW>2.0.CO;2.CrossRefGoogle Scholar
  21. Titchner, H. A., P. W. Thorne, M. P. McCarthy, S. F. B. Tett, L. Haimberger, and D. E. Parker, 2009: Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments. J. Climate, 22, 465–485, doi:10.1175/2008JCLI2419.1.CrossRefGoogle Scholar
  22. Wentz, F. J., and M. Schabel, 1998: Effects of orbit decay on satellitederived lower-tropospheric temperature trends. Nature, 394, 661–664, doi:10.1038/29267CrossRefGoogle Scholar
  23. Zou, C.-Z., and W. Wang, 2011: Inter-satellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.Google Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Roy W. Spencer
    • 1
    • 2
  • John R. Christy
    • 1
  • William D. Braswell
    • 1
  1. 1.Earth System Science CenterUniversity of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.Earth System Science CenterUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations