Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models

  • Donghyun Lee
  • Seung-Ki Min
  • Changyong Park
  • Myoung-Seok Suh
  • Joong-Bae Ahn
  • Dong-Hyun Cha
  • Dong-Kyou Lee
  • Song-You Hong
  • Seong-Chan Park
  • Hyun-Suk Kang
Article

Abstract

Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.

Key words

Time of emergence regional climate models RCP scenarios Northeast Asia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baek, H. J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49, 603–618.CrossRefGoogle Scholar
  2. Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambridge University Press, 867-952.Google Scholar
  3. Christensen, J. H., and Coauthors, 2007: Regional climate projections. In Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, 847–940.Google Scholar
  4. Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC, Cambridge University Press, 1217–1308.Google Scholar
  5. Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Clim. Dynam., 38, 527–546.CrossRefGoogle Scholar
  6. Donat, G. M., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi:10.1029/2012GL052459.CrossRefGoogle Scholar
  7. Giorgi, F., and X. Bi, 2009: Time of emergence (TOE) of GHG-forced precipitation change hot-spots: Geophys. Res. Lett., 36, L06709, doi: 10.1029/2009GL037593.CrossRefGoogle Scholar
  8. Giorgi, F., and Coauthors, 2012: RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res., 52, 7–29.CrossRefGoogle Scholar
  9. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated highresolution grids of monthly climatic observations-the CRU TS3. 10 Dataset, Int. J. Climatol., 34, 623–642.CrossRefGoogle Scholar
  10. Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1107.CrossRefGoogle Scholar
  11. Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals: Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.CrossRefGoogle Scholar
  12. Hong, S.-Y., and E.-C. Chang, 2012: Spectral Nudging Sensitivity Experiments in a Regional Climate Model. Asia-Pac. J. Atmos. Sci., 48, 345–355.CrossRefGoogle Scholar
  13. Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83–104, doi:10.1007/s13143-014-0029-2.CrossRefGoogle Scholar
  14. Im, E.-S., J.-B. Ahn, W.-T. Kwon, and F. Giorgi, 2008: Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 2: future climate projection (2021-2050). Clim. Dynam., 30, 239–254.CrossRefGoogle Scholar
  15. Im, E.-S., B.-J. Lee, J.-H. Kwon, S.-R. In, and S.-O. Han, 2012a: Potential increase of flood hazards in Korea due to global warming from a highresolution regional climate simulation. Asia-Pac. J. Atmos. Sci., 48, 107–113.CrossRefGoogle Scholar
  16. Im, E.-S., J.-B. Ahn, and D.-W. Kim, 2012b: An assessment of future dryness over Korea based on the ECHAM5-RegCM3 model chain under A1B emission scenario. Asia-Pac. J. Atmos. Sci., 48, 325–337.CrossRefGoogle Scholar
  17. Kang, H.-S., and S.-Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119 doi:10.1029/2007JD009692.CrossRefGoogle Scholar
  18. King, A. M., G. Donat, E. M. Fischer, E. Hawkins, L. V. Alexander, D. J. Karoly, A. J. Dittus, S. C. Lewis, and S. E. Perkins, 2015: The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10, 094015, doi:10.1088/1748-9326/10/9/094015.CrossRefGoogle Scholar
  19. King, A. M., M. T. Black, S.-K. Min, E. M. Fischer, D. M. Mitchell, L. J. Harrington, and S. E. Perkins-Kirkpatrick, 2016: Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett., published online, doi:10.1002/2015GL067448.Google Scholar
  20. Lee, J.-W., and S.-Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol., 117, 667–677, doi:10.1007/s00704-013-1034-6.CrossRefGoogle Scholar
  21. Li, W., W. Guo, Y. Xue, C. Fu, and B. Qiu, 2015: Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation. Clim. Dynam., doi: http://10.1007/s00382-015-2964-8.Google Scholar
  22. Maraun, D., 2013: When will trends in European mean and heavy daily precipitation emerge? Environ. Res. Lett., 8, 014004, doi:10.1088/1748-9326/8/1/014004.CrossRefGoogle Scholar
  23. Mahlstein, I., R. Knutti, S. Solomon, and R. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, doi:10.1088/1748-9326/6/3/034009.CrossRefGoogle Scholar
  24. Min, S.-K., Y. H. Kim, M. K. Kim, and C. Park, 2014: Assessing human contribution to the summer 2013 Korean heat wave, In: Explaining extreme events of 2013 from a climate perspective. Bull. Amer. Meteor. Soc., 95, S48–S51.Google Scholar
  25. Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103–121.CrossRefGoogle Scholar
  26. Moss, R., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.CrossRefGoogle Scholar
  27. Oh, S. G., M. S. Suh, and D. H. Cha, 2013: Impact of lateral boundary conditions on precipitation and temperature extremes over South Korea in the CORDEX regional climate simulation using RegCM4. Asia-Pac. J. Atmos. Sci., 49, 497–509.CrossRefGoogle Scholar
  28. Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dynam., 46, 2469–2486, doi:10.1007/s00382-015-2713-z.CrossRefGoogle Scholar
  29. Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the IPCC. Cambridge University Press, Cambridge, 109–230.Google Scholar
  30. Suh, M.-S., S.-G. Oh, D.-K. Lee, D. H., Cha. S.-J. Choi, C.-S. Jin, and S,- Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, 25, 7067–7082.CrossRefGoogle Scholar
  31. Suh, M.-S., and Coauthors, 2016: Projection of fine-scale climate change using muli-regional climate models and ensembles over South Korea based on four RCP scenarios. Part 1. Surface air temperature. Asia-Pac. J. Atmos. Sci., 52, doi:10.1007/s13143-016-0017-9.Google Scholar
  32. Sui, Y., X. Lang, and D. Jiang, 2014: Time of emergence of climate signals over China under the RCP4.5 scenario. Climatic Change, 125, 265–276.CrossRefGoogle Scholar
  33. Tebaldi, C., and R. Knutti, 2007: The use of the multi model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A, 365, 2053–2075.CrossRefGoogle Scholar
  34. Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biometrics Bull., 1, 80–83.CrossRefGoogle Scholar
  35. Yun, K.-S., K.-Y. Heo, J.-E. Chu, K.-J. Ha, E.-J. Lee, U. Choi, and A. Kitoh, 2012: Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea. Asia-Pac. J Atmos. Sci., 48, 213–226.CrossRefGoogle Scholar
  36. Zhou, L., R. E. Dickinson, P. Dirmeyer, A. Dai, and S.-K. Min, 2009: Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations. Geophys. Res. Lett., 36, L02702, doi:10.1029/2008GL036141.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Donghyun Lee
    • 1
  • Seung-Ki Min
    • 1
    • 9
  • Changyong Park
    • 1
  • Myoung-Seok Suh
    • 2
  • Joong-Bae Ahn
    • 3
  • Dong-Hyun Cha
    • 4
  • Dong-Kyou Lee
    • 5
  • Song-You Hong
    • 6
  • Seong-Chan Park
    • 7
  • Hyun-Suk Kang
    • 8
  1. 1.School of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Department of Atmospheric ScienceKongju National UniversityKongjuKorea
  3. 3.Department of Atmospheric SciencesPusan National UniversityBusanKorea
  4. 4.School of Urban and Environmental EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
  5. 5.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  6. 6.Korea Institute of Atmospheric Prediction SystemsSeoulKorea
  7. 7.Korea Meteorological AdministrationSeoulKorea
  8. 8.National Institute of Meteorological SciencesJejuKorea
  9. 9.School of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations