High-resolution simulations for Vietnam - methodology and evaluation of current climate

Abstract

To assist the government of Vietnam in its efforts to better understand the impacts of climate change and prioritise its adaptation measures, dynamically downscaled climate change projections were produced across Vietnam. Two Regional Climate Models (RCMs) were used: CSIRO’s variable-resolution Conformal-Cubic Atmospheric Model (CCAM) and the limited-area model Regional Climate Model system version 4.2 (RegCM4.2). First, global CCAM simulations were completed using bias- and variance-corrected sea surface temperatures as well as sea ice concentrations from six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models. This approach is different from other downscaling approaches as it does not use any atmospheric fields from the GCMs. The global CCAM simulations were then further downscaled to 10 km using CCAM and to 20 km using RegCM4.2. Evaluations of temperature and precipitation for the current climate (1980-2000) were completed using station data as well as various gridded observational datasets. The RCMs were able to reproduce reasonably well most of the important characteristics of observed spatial patterns and annual cycles of temperature. Average and minimum temperatures were well simulated (biases generally less than 1oC), while maximum temperatures had biases of around 1oC. For precipitation, although the RCMs captured the annual cycle, RegCM4.2 was too dry in Oct.-Nov. (-60% bias), while CCAM was too wet in Dec.- Mar. (130% bias). Both models were too dry in summer and too wet in winter (especially in northern Vietnam). The ability of the ensemble simulations to capture current climate increases confidence in the simulations of future climate.

This is a preview of subscription content, log in to check access.

References

  1. Afiesimama, E. A., J. S. Pal, B. J. Abiodun, W. J. Gutowski, and A. Adedoyin, 2006: Simulation of West African Monsoon using the RegCM3. Part I: Model validation and interannual variability. Theor. Appl. Climatol., 86, 23–37.

    Article  Google Scholar 

  2. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment: Part 1. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  3. Asian Development Bank, 1994: Climate change in Asia: Vietnam country report. Asian Development Bank, 102 pp.

  4. Asian Disaster Preparedness Center, 2003: Climate change and development in Vietnam: Agriculture and adaptation for the Mekong Delta region. Bangkok Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Postfach 51 80, D - 65726 Eschborn, Division 44 - Environment and Infrastructure, 27 pp.

  5. Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687–720.

    Article  Google Scholar 

  6. Bhend, J., and P. Whetton, 2013: Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Climatic Change, 118, 799–810.

    Article  Google Scholar 

  7. Bi, D., and Coauthors, 2013: The ACCESS coupled model: description, control climate and evaluation. Aust. Met. Oceanogr. J., 63, 41–64.

    Google Scholar 

  8. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere- Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. NCAR Tech. Note., Nat. Cent. Atmos. Res., Boulder, Colo., 72 pp.

    Google Scholar 

  9. Eckert, R., and M. Waibel, 2009: Climate change and challenges for the urban development of Ho Chi Minh City /Vietnam. Pacific News, 31, 18–20.

    Google Scholar 

  10. Elguindi, N., X. Bi, F. Giorgi, B. Nagarajan, J. Pal, F. Solmon, S. Rauscher, A. Zakey, and G. Giuliani, 2011: Regional Climatic Model RegCM user manual version 4.1. The Abdus Salam International Centre for Theoretical Physics, 32 pp.

    Google Scholar 

  11. Francisco, R.V., J. Argete, F. Giorgi, J. Pal, X. Bi, and W.J. Gutowski, 2006: Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes. Theor. Appl. Climatol., 86, 215–227.

    Article  Google Scholar 

  12. Freidenreich, S. M., and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31389–31409.

    Article  Google Scholar 

  13. Peter, R. Gent, Gokhan Danabasoglu, Leo J. Donner, Marika M. Holland, Elizabeth C. Hunke, Steve R. Jayne, David M. Lawrence, Richard B. Neale, Philip J. Rasch, Mariana Vertenstein, Patrick H. Worley, Zong-Liang Yang, Minghua Zhang, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991.

    Article  Google Scholar 

  14. Giorgetta, M., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J. Adv. Model. Earth Syst., 5, 572–597.

    Article  Google Scholar 

  15. Giorgi, F., N. Elguindi, S. Cozzini, and G. Giuliani, 2011: Regional Climatic Model RegCM user’s guide version 4.2. The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 64 pp.

    Google Scholar 

  16. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764–787.

    Article  Google Scholar 

  17. Griffies, S. M., and Coauthors, 2011: The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. J. Climate, 24, 3520–3544.

    Article  Google Scholar 

  18. Grose, M. R., J. N. Brown, S. Narsey, J. R. Brown, B. F. Murphy, C. Langlais, A. S. Gupta, A. F. Moise, and D. B. Irving, 2014: Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol., 34, 3382–3399.

    Article  Google Scholar 

  19. Harris, I., and P. D. Jones, 2014: CRU TS3.22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901-Dec. 2013). NCAS British Atmospheric Data Centre, 24 September 2014, doi:10.5285/18BE23F8-D252-482D-8AF9-5D6A2D40990C.

    Google Scholar 

  20. Ho, T.-M.-H., V.-T. Phan, N.-Q. Le, and Q.-T. Nguyen, 2011: Extreme climatic events over Vietnam from observational data and RegCM3 projections. Clim. Res., 49, 87–100.

    Article  Google Scholar 

  21. Hoffmann, P., J. J. Katzfey, J. L. McGregor, and M. Thatcher, 2016: The derivation of downscaling SSTs corrected for both bias and variance. Geophys. Res. Letters, in press.

    Google Scholar 

  22. Hulme, M., and D. Viner, 1998: A climate change scenario for the tropics. Climatic Change, 39, 145–176.

    Article  Google Scholar 

  23. IPCC (Intergovernmental Panel on Climate Change), 2013: AR5 (2013), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.

  24. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  25. Katzfey, J. J., J. L. McGregor, K. C. Nguyen, and M. Thatcher, 2009: Dynamical downscaling techniques: Impacts on regional climate change signals. 18th World IMACS /MODSIM Congress, Cairns, Australia, 3942–3947.

    Google Scholar 

  26. Katzfey, J. J., 2013: Chapter 15: Regional climate modelling for the energy sector. In Weather matters for energy, Springer, 319–333.

    Google Scholar 

  27. Katzfey, J. J., J. L. McGregor, and R. Suppiah, 2014: High-resolution climate projections for Vietnam: Technical report. CSIRO, Australia, 352 pp.

    Google Scholar 

  28. Kim, S. T., and J. Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

    Google Scholar 

  29. Kowalczyk, E. A., Y. P. Wang, R. M. Law, H. L. Davies, J. L. McGregor, and G. Abramowitz, 2006: The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper 13, 37 pp.

    Google Scholar 

  30. Kug, J. S., Y. G. Ham, J. Y. Lee and F. F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Env. Res. Lett., 7, doi:10.1088/1748-9326/7/3/039502.

    Google Scholar 

  31. McGregor, J. L., 1993: Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev., 121, 221–230.

    Article  Google Scholar 

  32. McGregor, J. L., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63, 105–117.

    Article  Google Scholar 

  33. McGregor, J. L., 2003: A new convection scheme using a simple closure. In Current issues in the parameterization of convection, BMRC Research Report 93, 33–36.

    Google Scholar 

  34. McGregor, J. L., 2005: C-CAM: Geometric aspects and dynamical formulation [electronic publication]. CSIRO Atmospheric Research Tech Paper 70, 43 pp.

    Google Scholar 

  35. McGregor, J. L., and M. R. Dix, 2001: The CSIRO conformal-cubic atmospheric GCM. In IUTAM Symposium on advances in mathematical modelling of atmosphere and ocean dynamics, Kluwer, Dordrecht, 197–202.

    Google Scholar 

  36. McGregor, J. L., and M. R. Dix, 2008: An updated description of the Conformal- Cubic Atmospheric Model. In High resolution simulation of the atmosphere and ocean, Springer, 51–76.

    Google Scholar 

  37. McGregor, J. L., H. B. Gordon, I. G. Watterson, M. R. Dix and L. D Rotstayn, 1993: The CSIRO 9-level atmospheric general circulation model. CSIRO Div. Atmospheric Research Tech Paper 26, 89 pp.

    Google Scholar 

  38. Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241.

    Article  Google Scholar 

  39. MONRE, 2009: Climate change and sea level rise scenarios for Viet Nam. Hanoi Agriculture Press, 33 pp.

  40. MONRE, 2012: Climate change, sea level rise scenarios for Viet Nam. Viet Nam Publishing House of Natural Resources, Environment and Cartography, 96 pp.

  41. Ngo-Duc, T., C. Kieu, M. Thatcher, D. Nguyen-Le, and T. Phan-Van, 2014: Climate projections for Vietnam based on regional climate models. Clim. Res., 60, 199–213.

    Article  Google Scholar 

  42. Nguyen, K. C., and J. L. McGregor, 2009: Modelling the Asian summer monsoon using CCAM. Clim. Dynam., 32, 219–236.

    Article  Google Scholar 

  43. Nguyen, K. C., J. J. Katzfey, and J. L. McGregor, 2012: Global 60 km simulations with CCAM: evaluation over the tropics. Clim. Dynam., 39, 637–654.

    Article  Google Scholar 

  44. Nguyen, K. C., J. J. Katzfey, and J. L. McGregor, 2013: Downscaling over Vietnam using the stretched-grid CCAM: verification of the mean and interannual variability of rainfall. Clim. Dynam., 43, 861–879.

    Article  Google Scholar 

  45. Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913–2927.

    Article  Google Scholar 

  46. Phan, V. T., T. Ngo-Duc, T. M. H. Ho, 2009: Seasonal and interannual variations of surface climate elements over Vietnam. J. Clim. Res., 40, 49–60.

    Article  Google Scholar 

  47. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M.G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.

    Article  Google Scholar 

  48. Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282.

    Google Scholar 

  49. Rotstayn, L. D., and U. Lohmann, 2002: Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. J. Geophys. Res., 107, doi:10.1029/2002JD002128.

    Google Scholar 

  50. Schmidt, F, 1977: Variable fine mesh in spectral global model. Beitr. Phys. Atmos., 50, 211–217.

    Google Scholar 

  51. Schwarzkopf, M. D., and V. Ramaswamy, 1999: Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment. J. Geophys. Res., 104, 9467–9488.

    Article  Google Scholar 

  52. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  53. Thatcher, M., and J. L. McGregor, 2009: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon. Wea. Rev., 137, 1742–1752.

    Article  Google Scholar 

  54. Voldoire, A. E., and Coauthors, 2012: The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dynam., 40, 2091–2121.

    Article  Google Scholar 

  55. Waibel, M., 2008: Implications and challenges of climate change for Vietnam. Pacific News, 29, 26–27.

    Google Scholar 

  56. Watterson, I. G., J. Bathols, and C. Heady, 2013a: What influences the skill of climate models over the continents? Bull. Amer. Meteor. Soc., 95, 689–700.

    Article  Google Scholar 

  57. Watterson, I. G., A. C. Hirst, and L. D. Rotstayn, 2013b: A skill-score based evaluation of simulated Australian climate. Aust. Meteor. Oceanogr. J., 63, 181–190.

    Google Scholar 

  58. Yatagai, A., K. Kamiguchi, O. Arakawa, H. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jack Katzfey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katzfey, J., Nguyen, K., McGregor, J. et al. High-resolution simulations for Vietnam - methodology and evaluation of current climate. Asia-Pacific J Atmos Sci 52, 91–106 (2016). https://doi.org/10.1007/s13143-016-0011-2

Download citation

Key words

  • Regional climate
  • dynamical downscaling
  • evaluation