High-resolution simulations for Vietnam - methodology and evaluation of current climate

  • Jack Katzfey
  • Kim Nguyen
  • John McGregor
  • Peter Hoffmann
  • Suppiah Ramasamy
  • Hiep Van Nguyen
  • Mai Van Khiem
  • Thang Van Nguyen
  • Kien Ba Truong
  • Thang Van Vu
  • Hien Thuan Nguyen
  • Tran Thuc
  • Doan Ha Phong
  • Bang Thanh Nguyen
  • Tan Phan-Van
  • Trung Nguyen-Quang
  • Thanh Ngo-Duc
  • Long Trinh-Tuan
Article

Abstract

To assist the government of Vietnam in its efforts to better understand the impacts of climate change and prioritise its adaptation measures, dynamically downscaled climate change projections were produced across Vietnam. Two Regional Climate Models (RCMs) were used: CSIRO’s variable-resolution Conformal-Cubic Atmospheric Model (CCAM) and the limited-area model Regional Climate Model system version 4.2 (RegCM4.2). First, global CCAM simulations were completed using bias- and variance-corrected sea surface temperatures as well as sea ice concentrations from six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models. This approach is different from other downscaling approaches as it does not use any atmospheric fields from the GCMs. The global CCAM simulations were then further downscaled to 10 km using CCAM and to 20 km using RegCM4.2. Evaluations of temperature and precipitation for the current climate (1980-2000) were completed using station data as well as various gridded observational datasets. The RCMs were able to reproduce reasonably well most of the important characteristics of observed spatial patterns and annual cycles of temperature. Average and minimum temperatures were well simulated (biases generally less than 1oC), while maximum temperatures had biases of around 1oC. For precipitation, although the RCMs captured the annual cycle, RegCM4.2 was too dry in Oct.-Nov. (-60% bias), while CCAM was too wet in Dec.- Mar. (130% bias). Both models were too dry in summer and too wet in winter (especially in northern Vietnam). The ability of the ensemble simulations to capture current climate increases confidence in the simulations of future climate.

Key words

Regional climate dynamical downscaling evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afiesimama, E. A., J. S. Pal, B. J. Abiodun, W. J. Gutowski, and A. Adedoyin, 2006: Simulation of West African Monsoon using the RegCM3. Part I: Model validation and interannual variability. Theor. Appl. Climatol., 86, 23–37.CrossRefGoogle Scholar
  2. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment: Part 1. J. Atmos. Sci., 31, 674–701.CrossRefGoogle Scholar
  3. Asian Development Bank, 1994: Climate change in Asia: Vietnam country report. Asian Development Bank, 102 pp.Google Scholar
  4. Asian Disaster Preparedness Center, 2003: Climate change and development in Vietnam: Agriculture and adaptation for the Mekong Delta region. Bangkok Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Postfach 51 80, D - 65726 Eschborn, Division 44 - Environment and Infrastructure, 27 pp.Google Scholar
  5. Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687–720.CrossRefGoogle Scholar
  6. Bhend, J., and P. Whetton, 2013: Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Climatic Change, 118, 799–810.CrossRefGoogle Scholar
  7. Bi, D., and Coauthors, 2013: The ACCESS coupled model: description, control climate and evaluation. Aust. Met. Oceanogr. J., 63, 41–64.Google Scholar
  8. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere- Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. NCAR Tech. Note., Nat. Cent. Atmos. Res., Boulder, Colo., 72 pp.Google Scholar
  9. Eckert, R., and M. Waibel, 2009: Climate change and challenges for the urban development of Ho Chi Minh City /Vietnam. Pacific News, 31, 18–20.Google Scholar
  10. Elguindi, N., X. Bi, F. Giorgi, B. Nagarajan, J. Pal, F. Solmon, S. Rauscher, A. Zakey, and G. Giuliani, 2011: Regional Climatic Model RegCM user manual version 4.1. The Abdus Salam International Centre for Theoretical Physics, 32 pp.Google Scholar
  11. Francisco, R.V., J. Argete, F. Giorgi, J. Pal, X. Bi, and W.J. Gutowski, 2006: Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes. Theor. Appl. Climatol., 86, 215–227.CrossRefGoogle Scholar
  12. Freidenreich, S. M., and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31389–31409.CrossRefGoogle Scholar
  13. Peter, R. Gent, Gokhan Danabasoglu, Leo J. Donner, Marika M. Holland, Elizabeth C. Hunke, Steve R. Jayne, David M. Lawrence, Richard B. Neale, Philip J. Rasch, Mariana Vertenstein, Patrick H. Worley, Zong-Liang Yang, Minghua Zhang, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991.CrossRefGoogle Scholar
  14. Giorgetta, M., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J. Adv. Model. Earth Syst., 5, 572–597.CrossRefGoogle Scholar
  15. Giorgi, F., N. Elguindi, S. Cozzini, and G. Giuliani, 2011: Regional Climatic Model RegCM user’s guide version 4.2. The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 64 pp.Google Scholar
  16. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764–787.CrossRefGoogle Scholar
  17. Griffies, S. M., and Coauthors, 2011: The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. J. Climate, 24, 3520–3544.CrossRefGoogle Scholar
  18. Grose, M. R., J. N. Brown, S. Narsey, J. R. Brown, B. F. Murphy, C. Langlais, A. S. Gupta, A. F. Moise, and D. B. Irving, 2014: Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol., 34, 3382–3399.CrossRefGoogle Scholar
  19. Harris, I., and P. D. Jones, 2014: CRU TS3.22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901-Dec. 2013). NCAS British Atmospheric Data Centre, 24 September 2014, doi:10.5285/18BE23F8-D252-482D-8AF9-5D6A2D40990C.Google Scholar
  20. Ho, T.-M.-H., V.-T. Phan, N.-Q. Le, and Q.-T. Nguyen, 2011: Extreme climatic events over Vietnam from observational data and RegCM3 projections. Clim. Res., 49, 87–100.CrossRefGoogle Scholar
  21. Hoffmann, P., J. J. Katzfey, J. L. McGregor, and M. Thatcher, 2016: The derivation of downscaling SSTs corrected for both bias and variance. Geophys. Res. Letters, in press.Google Scholar
  22. Hulme, M., and D. Viner, 1998: A climate change scenario for the tropics. Climatic Change, 39, 145–176.CrossRefGoogle Scholar
  23. IPCC (Intergovernmental Panel on Climate Change), 2013: AR5 (2013), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.Google Scholar
  24. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  25. Katzfey, J. J., J. L. McGregor, K. C. Nguyen, and M. Thatcher, 2009: Dynamical downscaling techniques: Impacts on regional climate change signals. 18th World IMACS /MODSIM Congress, Cairns, Australia, 3942–3947.Google Scholar
  26. Katzfey, J. J., 2013: Chapter 15: Regional climate modelling for the energy sector. In Weather matters for energy, Springer, 319–333.Google Scholar
  27. Katzfey, J. J., J. L. McGregor, and R. Suppiah, 2014: High-resolution climate projections for Vietnam: Technical report. CSIRO, Australia, 352 pp.Google Scholar
  28. Kim, S. T., and J. Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.Google Scholar
  29. Kowalczyk, E. A., Y. P. Wang, R. M. Law, H. L. Davies, J. L. McGregor, and G. Abramowitz, 2006: The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper 13, 37 pp.Google Scholar
  30. Kug, J. S., Y. G. Ham, J. Y. Lee and F. F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Env. Res. Lett., 7, doi:10.1088/1748-9326/7/3/039502.Google Scholar
  31. McGregor, J. L., 1993: Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev., 121, 221–230.CrossRefGoogle Scholar
  32. McGregor, J. L., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63, 105–117.CrossRefGoogle Scholar
  33. McGregor, J. L., 2003: A new convection scheme using a simple closure. In Current issues in the parameterization of convection, BMRC Research Report 93, 33–36.Google Scholar
  34. McGregor, J. L., 2005: C-CAM: Geometric aspects and dynamical formulation [electronic publication]. CSIRO Atmospheric Research Tech Paper 70, 43 pp.Google Scholar
  35. McGregor, J. L., and M. R. Dix, 2001: The CSIRO conformal-cubic atmospheric GCM. In IUTAM Symposium on advances in mathematical modelling of atmosphere and ocean dynamics, Kluwer, Dordrecht, 197–202.CrossRefGoogle Scholar
  36. McGregor, J. L., and M. R. Dix, 2008: An updated description of the Conformal- Cubic Atmospheric Model. In High resolution simulation of the atmosphere and ocean, Springer, 51–76.CrossRefGoogle Scholar
  37. McGregor, J. L., H. B. Gordon, I. G. Watterson, M. R. Dix and L. D Rotstayn, 1993: The CSIRO 9-level atmospheric general circulation model. CSIRO Div. Atmospheric Research Tech Paper 26, 89 pp.Google Scholar
  38. Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241.CrossRefGoogle Scholar
  39. MONRE, 2009: Climate change and sea level rise scenarios for Viet Nam. Hanoi Agriculture Press, 33 pp.Google Scholar
  40. MONRE, 2012: Climate change, sea level rise scenarios for Viet Nam. Viet Nam Publishing House of Natural Resources, Environment and Cartography, 96 pp.Google Scholar
  41. Ngo-Duc, T., C. Kieu, M. Thatcher, D. Nguyen-Le, and T. Phan-Van, 2014: Climate projections for Vietnam based on regional climate models. Clim. Res., 60, 199–213.CrossRefGoogle Scholar
  42. Nguyen, K. C., and J. L. McGregor, 2009: Modelling the Asian summer monsoon using CCAM. Clim. Dynam., 32, 219–236.CrossRefGoogle Scholar
  43. Nguyen, K. C., J. J. Katzfey, and J. L. McGregor, 2012: Global 60 km simulations with CCAM: evaluation over the tropics. Clim. Dynam., 39, 637–654.CrossRefGoogle Scholar
  44. Nguyen, K. C., J. J. Katzfey, and J. L. McGregor, 2013: Downscaling over Vietnam using the stretched-grid CCAM: verification of the mean and interannual variability of rainfall. Clim. Dynam., 43, 861–879.CrossRefGoogle Scholar
  45. Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913–2927.CrossRefGoogle Scholar
  46. Phan, V. T., T. Ngo-Duc, T. M. H. Ho, 2009: Seasonal and interannual variations of surface climate elements over Vietnam. J. Clim. Res., 40, 49–60.CrossRefGoogle Scholar
  47. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M.G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.CrossRefGoogle Scholar
  48. Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282.Google Scholar
  49. Rotstayn, L. D., and U. Lohmann, 2002: Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. J. Geophys. Res., 107, doi:10.1029/2002JD002128.Google Scholar
  50. Schmidt, F, 1977: Variable fine mesh in spectral global model. Beitr. Phys. Atmos., 50, 211–217.Google Scholar
  51. Schwarzkopf, M. D., and V. Ramaswamy, 1999: Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment. J. Geophys. Res., 104, 9467–9488.CrossRefGoogle Scholar
  52. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.CrossRefGoogle Scholar
  53. Thatcher, M., and J. L. McGregor, 2009: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon. Wea. Rev., 137, 1742–1752.CrossRefGoogle Scholar
  54. Voldoire, A. E., and Coauthors, 2012: The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dynam., 40, 2091–2121.CrossRefGoogle Scholar
  55. Waibel, M., 2008: Implications and challenges of climate change for Vietnam. Pacific News, 29, 26–27.Google Scholar
  56. Watterson, I. G., J. Bathols, and C. Heady, 2013a: What influences the skill of climate models over the continents? Bull. Amer. Meteor. Soc., 95, 689–700.CrossRefGoogle Scholar
  57. Watterson, I. G., A. C. Hirst, and L. D. Rotstayn, 2013b: A skill-score based evaluation of simulated Australian climate. Aust. Meteor. Oceanogr. J., 63, 181–190.Google Scholar
  58. Yatagai, A., K. Kamiguchi, O. Arakawa, H. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jack Katzfey
    • 1
    • 6
  • Kim Nguyen
    • 1
  • John McGregor
    • 1
  • Peter Hoffmann
    • 1
    • 4
  • Suppiah Ramasamy
    • 1
  • Hiep Van Nguyen
    • 2
  • Mai Van Khiem
    • 2
  • Thang Van Nguyen
    • 2
  • Kien Ba Truong
    • 2
  • Thang Van Vu
    • 2
  • Hien Thuan Nguyen
    • 2
  • Tran Thuc
    • 2
  • Doan Ha Phong
    • 2
  • Bang Thanh Nguyen
    • 2
  • Tan Phan-Van
    • 3
  • Trung Nguyen-Quang
    • 3
  • Thanh Ngo-Duc
    • 5
  • Long Trinh-Tuan
    • 3
  1. 1.CSIRO - Oceans and AtmosphereAspendaleAustralia
  2. 2.Institute of MeteorologyHydrology and Climate Change (IMHEN)HanoiVietnam
  3. 3.VNU Hanoi University of Science (HUS)HanoiVietnam
  4. 4.Department of MathematicsUniversity of HamburgBerlinGermany
  5. 5.University of Science and Technology of Hanoi (USTH)HanoiVietnam
  6. 6.CSIRO-Oceans and AtmosphereAspendaleAustralia

Personalised recommendations