Skip to main content
Log in

Numerical experiments on the impacts of surface evaporation and fractionation factors on stable isotopes in precipitation

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragúas-Aragúas, L., K. Froehlich, and K. Rozanski, 1998: Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res., 103, 28721–28742.

    Article  Google Scholar 

  • Aragúas-Aragúas, L., K. Froehlich, and K. Rozanski, 2000: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process., 14, 1341–1355.

    Article  Google Scholar 

  • Craig, H., 1961: Isotopic variations in meteoric water. Science, 133, 1702–1703.

    Article  Google Scholar 

  • Craig, H., and L. I. Gordon, 1965: Deuterium and oxygen-18 variations in the ocean and marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Lab. Geologia Nucleare, Italy, 9–130.

    Google Scholar 

  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436–468.

    Article  Google Scholar 

  • Eriksson, E., 1965: Deuterium and 18O in precipitation and other natural waters, some theoretical considerations. Tellus, 17, 498–512.

    Article  Google Scholar 

  • Fischer, M. J., and K. Sturm, 2006: REMOiso forcing for the iPILPS Phase 1 experiments and the performance of REMOiso in three domains. Global Planet. Change, 51, 108–120.

    Article  Google Scholar 

  • Gat, J. R., 1970: Environmental isotope balance of Lake Tiberis. In: Isotope Hydrology, International Atomic Energy Agency, Vienna, 109–127.

    Google Scholar 

  • Gedzelman, S. D., 1988: Deuterium in water vapour above the atmospheric boundary layer. Tellus B, 40, 134–147.

    Article  Google Scholar 

  • Gibbson, J. J., T. W. D. Edwards, G. G. Bursey, and T. D. Prowse, 1993: Estimating evaporation using stable isotopes, quantitative results and sensitivity analysis for two catchments in Northern Canada. Nord. Hydrol., 24, 79–94.

    Google Scholar 

  • Guan, H., X. Zhang, G. Skrzypek, Z. Sun, and X. Xu, 2013: Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J. Geophys. Res., 118, 1123–1138.

    Google Scholar 

  • Henderson-Sellers, A., M. Fischer, I. Aleinov, K. McGuffie, W. J. Riley, G. A. Schmidt, K. Sturm, K. Yaoshimura, and P. Irannejad, 2006: Stable water isotope simulation by current land-surface schemes, results of iPILPS Phase 1. Global Planet. Change, 51, 34–58.

    Article  Google Scholar 

  • Hoffmann, G., M. Werner, and M. Heimann, 1998: Water isotope module of the ECHAM atmospheric general circulation model, a study on timescales from days to several years. J. Geophys. Res., 103, 16871–16896.

    Article  Google Scholar 

  • Jacob, H., and C. Sonntag, 1991: An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus, 43B, 291–300.

    Article  Google Scholar 

  • Joussaume, S., R. Sadourny, and J. Jouzel, 1984: A general circulation model of water isotope cycles in the atmosphere. Nature, 311, 24–29.

    Article  Google Scholar 

  • Jouzel, J., 1986: Isotopes in cloud, multiphase and multistage condensation process. Handbook of Environmental Isotope Geochemistry (2), Amsterdam-Oxford-New York, Elsevier Scientific Publishing Company, 61–112.

    Google Scholar 

  • Jouzel, J., and L. Merlivat, 1984: Deuterium and oxygen-18 in precipitation, modeling of the isotopic effects at snow formation. J. Geophys. Res., 80, 5015–5030.

    Article  Google Scholar 

  • Jouzel, J., G. Russell, and R. Suozzo, 1987: Simulations of the HDO and H2 18O atmospheric cycles using the NASA-GISS general circulation model-the seasonal cycle for present day conditions. J. Geophys. Res., 92, 14739–14760.

    Article  Google Scholar 

  • Liu, J., X. Song, G. Yuan, X. Sun, X. Liu, and S. Wang, 2010: Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapour sources. Chinese Sci. Bull., 55, 200–211.

    Article  Google Scholar 

  • Liu, J., X. Song, G. Yuan, X. Sun, and L. Yang, 2014: Stable isotopic compositions of precipitation in China. Tellus B, 66, 22567, doi:10.3402/tellusb.v66.22567.

    Google Scholar 

  • Majoube, M., 1971a: Fractionnement en oxygene 18 et en deuterium entre l’eau et savapeur. J. Chem. Phys., 10, 1423–1436.

    Google Scholar 

  • Majoube, M., 1971b: Fractionnement en oxygene 18 entre la glace et la vapeur d’eau. J. Chem. Phys., 68, 625–636.

    Google Scholar 

  • Merlivat, L., and J. Jouzel, 1979: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res., 84, 5029–5033.

    Article  Google Scholar 

  • Oki, T., K. Musiake, H. Matsuyama, and K. Masuda, 1995: Global atmospheric water balance and runoff from large river basins. Hydrol. Process., 9, 655–678.

    Article  Google Scholar 

  • Pang, H., Y. He, Z. Zhang, A. Lu, J. Gu, and J. Zhao, 2005: Origin of summer monsoon rainfall identified by δ18O in precipitation. Chinese Sci. Bull., 50, 2761–2764.

    Article  Google Scholar 

  • Rozanski, K., C. Sonntag, and K. Münnich, 1982: Factors controlling stable isotope composition of European precipitation. Tellus, 34, 142–150.

    Article  Google Scholar 

  • Rozanski, K., L. Araguás-Araguás, and R. Gonfiantini, 1993: Isotopic patterns in modern global precipitation. Climate change in continental isotopic records, Amer. Geophys. Union, 1–36.

    Google Scholar 

  • Saxena, R., and E. Eriksson, 1985: Hydrometeorological interpretation of isotopic data on atmospheric moisture and precipitation. Ann. Glaciol., 7, 181–184.

    Google Scholar 

  • Uemura, R., Y. Matsui, K. Yoshimura, H. Motoyama, and N. Yoshida, 2008: Evidence of deuterium excess in water vapour as an indicator of ocean surface conditions. J. Geophys. Res., 113, doi:10.1029/2008-JD010209.

    Google Scholar 

  • White, J., and S. Gedzelman, 1984: The isotopic composition of atmospheric water vapour and the concurrent meteorological situation. J. Geophys. Res., 89, 4937–4939.

    Article  Google Scholar 

  • Xi, X., 2014: A review of water isotopes in atmospheric general circulation models: recent advances and future prospects. Int. J. Atmos. Sci., 2014, 250920, doi: http://dx.doi.org/10.1155/2014/250920.

    Google Scholar 

  • Yapp, C., 1982: A model for the relationship between precipitation D/H ratios and precipitation intensity. J. Geophys. Res., 87, 9614–9620.

    Article  Google Scholar 

  • Yoshimura, K., T. Oki, N. Ohte, and S. Kanae, 2003: A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model. J. Geophys. Res., 108, doi:10.1029/2003JD003477.

    Google Scholar 

  • Yoshimura, K., T. Oki, and K. Ichiyanagi, 2004: Evaluation of two-dimensional atmospheric water circulation fields in reanalyses by using precipitation isotopes databases. J. Geophys. Res., 109, doi:10.1029/2004JD004764.

    Google Scholar 

  • Zhang, B., 1994: Distribution characters of stable isotopes of waters in the Qinghai Lake area and their evolutional law. Evolution of Recent Environment in Qinghai Lake and its Prediction, Science Press, Beijing, 29–40 (in Chinese).

    Google Scholar 

  • Zhang, X., T. Yao, J. Liu, L. Tian, and M. Nakawo, 2003: Simulations of stable isotopic fractionation in mixed cloud in middle latitudes—taking the precipitation at Urumqi as an example. Adv. Atmos. Sci., 20, 261–268.

    Article  Google Scholar 

  • Zhang, X., L. Tian, and J. Liu, 2005: Fractionation mechanism of stable isotope in evaporating water body. J. Geogr. Sci., 15, 375–384.

    Article  Google Scholar 

  • Zhang, X., Z. Sun, H. Guan, X. Z. Zhang, H. Wu, and Y. Huang, 2012: GCM simulation of stable isotopes in the water cycle and comparison with GNIP observation over the East Asia. Acta Meteorol. Sin., 26, 420–437.

    Article  Google Scholar 

  • Zhang, X., H. Guan, X. Z. Zhang, H. Wu, G. Li, and Y. Huang, 2015: Simulation of stable water isotopic composition in the atmosphere using an isotopic atmospheric water balance model. Int. J. Climatol., 35, 846–859.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Guan, H., Zhang, X. et al. Numerical experiments on the impacts of surface evaporation and fractionation factors on stable isotopes in precipitation. Asia-Pacific J Atmos Sci 52, 327–339 (2016). https://doi.org/10.1007/s13143-016-0008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0008-x

Key words

Navigation