Skip to main content

Wintertime winds in and around the Ulaanbaatar metropolitan area in the presence of a temperature inversion

Abstract

Temperature inversions are frequently observed in mountainous urban areas and can cause severe air pollution problems especially in wintertime. This study investigates wintertime winds in and around the Ulaanbaatar, the capital of Mongolia, metropolitan area in the presence of a temperature inversion using the Weather Research and Forecasting (WRF) model coupled with the Seoul National University Urban Canopy Model (SNUUCM). Ulaanbaatar is located in complex terrain and in a nearly east-west-oriented valley. A wintertime scenario with clear skies, weak synoptic winds, and a temperature inversion under the influence of a Siberian high-pressure system is selected. Local winds are weak in the presence of the temperature inversion. In the daytime, weak mountain upslope winds develop, up-valley winds appear to be stronger in the urban area than in the surrounding areas, and channeling winds are produced in the main valley. The bottom of the temperature inversion layer rises up in the urban area, and winds below the bottom of the temperature inversion layer strengthen. In the nighttime, mountain downslope winds and down-valley winds develop. Urban effects in the presence of the temperature inversion are examined by comparing the results of simulations with and without the city. It is shown that in the daytime the urban area acts to elevate the bottom of the temperature inversion layer and weaken the strength of the temperature inversion layer. Winds east of the city weaken in the afternoon and down-valley winds develop later in the simulation with the city.

This is a preview of subscription content, access via your institution.

References

  • Arino, O., J. Ramos, V. Kalogirou, P. Defourny, and F. Achard, 2010: GlobCover 2009. ESA Living Planet Symposium, Bergen, Norway, ESA, SP-686.

    Google Scholar 

  • Baasankhuu, G., and P. Gomboluudev, 1996: Some characteristics of the temperature inversion over Mongolia. Pap. Meteor. Hydrol., 18, 41–46 (in Mongolian).

    Google Scholar 

  • Bader, D. C., and T. B. McKee, 1985: Effects of shear, stability and valley characteristics on the destruction of temperature inversions. J. Climate Appl. Meteor., 24, 822–832.

    Article  Google Scholar 

  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. Pichugina, and J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 3068–3090.

    Article  Google Scholar 

  • Bradley, R. S., F. T. Keimig, and H. F. Diaz, 1992: Climatology of surfacebased inversions in the North American Arctic. J. Geophys. Res., 97, 15699–15712.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Colette, A, F. K. Chow, and L. S. Robert, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor., 42, 1255–1272.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Eckman, R. M., 1998: Observations and numerical simulations of winds within a broad forested valley. J. Appl. Meteor., 37, 206–219.

    Article  Google Scholar 

  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ., 83, 287–302.

    Article  Google Scholar 

  • Ganbat, G., and J.-J. Baik, 2015: Local circulations in and around the Ulaanbaatar, Mongolia, metropolitan area. Meteor. Atmos. Phys., 127, 393–406.

    Article  Google Scholar 

  • Gerelchuluun, B., and J.-B. Ahn, 2014: Air temperature distribution over Mongolia using dynamical downscaling and statistical correction. Int. J. Climatol., 34, 2464–2476.

    Article  Google Scholar 

  • Google Inc., 2013: Google Earth. http://maps.google.com.

    Google Scholar 

  • Grimmond, C. S. B., and Coauthors, 2010: The international urban energy balance models comparison project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 1268–1292.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Hu, X. M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831–1844.

    Article  Google Scholar 

  • Hu, X. M., P. M. Klein, and M. Xue, 2013a: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10490–10505.

    Google Scholar 

  • Hu, X. M., P. M. Klein, M. Xue, J. K. Lundquist, F. Q. Zhang, and Y. C. Qi, 2013b: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 1779–1802.

    Article  Google Scholar 

  • Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara, 2008: Hole-filled SRTM for the globe version 4. [Available online at http://srtm.csi.cgiar.org].

    Google Scholar 

  • Jung, J., B. Tsatsral, Y.-J. Kim, and K. Kawamura, 2010: Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter on 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J. Geophys. Res., 115, D22203, doi:10.1029/2010 JD014339.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 2318–2341.

    Article  Google Scholar 

  • Kelly, R. D., 1988: Asymmetric removal of temperature inversions in a high mountain valley. J. Appl. Meteor., 27, 664–673.

    Article  Google Scholar 

  • Lee, S.-H., and H.-D. Kim, 2008: Effects of regional warming due to urbanization on daytime local circulations in a complex basin of the Daegu metropolitan area, Korea. J. Appl. Meteor. Climatol., 47, 1427–1441.

    Article  Google Scholar 

  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2014: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 30–54.

    Article  Google Scholar 

  • Li, X., X. Xia, Y. Xin, Y. Ma, J. Yang, J. Li, and X. Yang, 2012: An examination of boundary layer structure under the influence of the gap winds in Urumqi, China, during air pollution episode in winter. J. Air. Waste Manage. Assoc., 62, 26–37.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climatol. Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Mahrt, L., and D. Vickers, 2006: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105, 351–365.

    Article  Google Scholar 

  • Malek, E., T. Davis, R. S. Martin, and P. J. Silva, 2006: Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmos. Res., 79, 108–122.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Olofson, K. F. G., P. U. Andersson, M. Hallquist, E. Ljungström, L. Tang, D. Chen, and J. B. C. Pettersson, 2009: Urban aerosol evolution and particle formation during wintertime temperature inversions. Atmos. Environ., 43, 340–346.

    Article  Google Scholar 

  • Palffy, E., 1995: Temperature inversion in the Csik basin. Acta Climatol., 28-29, 41–45.

    Google Scholar 

  • Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784–801.

    Article  Google Scholar 

  • Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773–1794.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR, Boulder, 101 pp.

    Google Scholar 

  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteor., 21, 270–289.

    Article  Google Scholar 

  • Whiteman, C. D., and T. B. McKee, 1977: Observations of vertical atmospheric structure in a deep mountain valley. Arch. Met. Geophys. Biokl. Ser. A., 26, 39–50.

    Article  Google Scholar 

  • Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 1669–1982.

    Article  Google Scholar 

  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado plateau basin. J. Appl. Meteor., 38, 1103–1117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gantuya Ganbat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganbat, G., Baik, JJ. Wintertime winds in and around the Ulaanbaatar metropolitan area in the presence of a temperature inversion. Asia-Pacific J Atmos Sci 52, 309–325 (2016). https://doi.org/10.1007/s13143-016-0007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0007-y

Key words

  • Temperature inversion
  • wintertime winds
  • Ulaanbaatar
  • WRF model
  • urban canopy model