Wintertime winds in and around the Ulaanbaatar metropolitan area in the presence of a temperature inversion

  • Gantuya GanbatEmail author
  • Jong-Jin Baik


Temperature inversions are frequently observed in mountainous urban areas and can cause severe air pollution problems especially in wintertime. This study investigates wintertime winds in and around the Ulaanbaatar, the capital of Mongolia, metropolitan area in the presence of a temperature inversion using the Weather Research and Forecasting (WRF) model coupled with the Seoul National University Urban Canopy Model (SNUUCM). Ulaanbaatar is located in complex terrain and in a nearly east-west-oriented valley. A wintertime scenario with clear skies, weak synoptic winds, and a temperature inversion under the influence of a Siberian high-pressure system is selected. Local winds are weak in the presence of the temperature inversion. In the daytime, weak mountain upslope winds develop, up-valley winds appear to be stronger in the urban area than in the surrounding areas, and channeling winds are produced in the main valley. The bottom of the temperature inversion layer rises up in the urban area, and winds below the bottom of the temperature inversion layer strengthen. In the nighttime, mountain downslope winds and down-valley winds develop. Urban effects in the presence of the temperature inversion are examined by comparing the results of simulations with and without the city. It is shown that in the daytime the urban area acts to elevate the bottom of the temperature inversion layer and weaken the strength of the temperature inversion layer. Winds east of the city weaken in the afternoon and down-valley winds develop later in the simulation with the city.

Key words

Temperature inversion wintertime winds Ulaanbaatar WRF model urban canopy model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arino, O., J. Ramos, V. Kalogirou, P. Defourny, and F. Achard, 2010: GlobCover 2009. ESA Living Planet Symposium, Bergen, Norway, ESA, SP-686.Google Scholar
  2. Baasankhuu, G., and P. Gomboluudev, 1996: Some characteristics of the temperature inversion over Mongolia. Pap. Meteor. Hydrol., 18, 41–46 (in Mongolian).Google Scholar
  3. Bader, D. C., and T. B. McKee, 1985: Effects of shear, stability and valley characteristics on the destruction of temperature inversions. J. Climate Appl. Meteor., 24, 822–832.CrossRefGoogle Scholar
  4. Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. Pichugina, and J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 3068–3090.CrossRefGoogle Scholar
  5. Bradley, R. S., F. T. Keimig, and H. F. Diaz, 1992: Climatology of surfacebased inversions in the North American Arctic. J. Geophys. Res., 97, 15699–15712.CrossRefGoogle Scholar
  6. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.CrossRefGoogle Scholar
  7. Colette, A, F. K. Chow, and L. S. Robert, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor., 42, 1255–1272.CrossRefGoogle Scholar
  8. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.CrossRefGoogle Scholar
  9. Eckman, R. M., 1998: Observations and numerical simulations of winds within a broad forested valley. J. Appl. Meteor., 37, 206–219.CrossRefGoogle Scholar
  10. Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ., 83, 287–302.CrossRefGoogle Scholar
  11. Ganbat, G., and J.-J. Baik, 2015: Local circulations in and around the Ulaanbaatar, Mongolia, metropolitan area. Meteor. Atmos. Phys., 127, 393–406.CrossRefGoogle Scholar
  12. Gerelchuluun, B., and J.-B. Ahn, 2014: Air temperature distribution over Mongolia using dynamical downscaling and statistical correction. Int. J. Climatol., 34, 2464–2476.CrossRefGoogle Scholar
  13. Google Inc., 2013: Google Earth. Scholar
  14. Grimmond, C. S. B., and Coauthors, 2010: The international urban energy balance models comparison project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 1268–1292.CrossRefGoogle Scholar
  15. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.CrossRefGoogle Scholar
  16. Hu, X. M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831–1844.CrossRefGoogle Scholar
  17. Hu, X. M., P. M. Klein, and M. Xue, 2013a: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10490–10505.Google Scholar
  18. Hu, X. M., P. M. Klein, M. Xue, J. K. Lundquist, F. Q. Zhang, and Y. C. Qi, 2013b: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 1779–1802.CrossRefGoogle Scholar
  19. Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara, 2008: Hole-filled SRTM for the globe version 4. [Available online at].Google Scholar
  20. Jung, J., B. Tsatsral, Y.-J. Kim, and K. Kawamura, 2010: Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter on 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J. Geophys. Res., 115, D22203, doi:10.1029/2010 JD014339.CrossRefGoogle Scholar
  21. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 2318–2341.CrossRefGoogle Scholar
  22. Kelly, R. D., 1988: Asymmetric removal of temperature inversions in a high mountain valley. J. Appl. Meteor., 27, 664–673.CrossRefGoogle Scholar
  23. Lee, S.-H., and H.-D. Kim, 2008: Effects of regional warming due to urbanization on daytime local circulations in a complex basin of the Daegu metropolitan area, Korea. J. Appl. Meteor. Climatol., 47, 1427–1441.CrossRefGoogle Scholar
  24. LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2014: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 30–54.CrossRefGoogle Scholar
  25. Li, X., X. Xia, Y. Xin, Y. Ma, J. Yang, J. Li, and X. Yang, 2012: An examination of boundary layer structure under the influence of the gap winds in Urumqi, China, during air pollution episode in winter. J. Air. Waste Manage. Assoc., 62, 26–37.CrossRefGoogle Scholar
  26. Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climatol. Appl. Meteor., 22, 1065–1092.CrossRefGoogle Scholar
  27. Mahrt, L., and D. Vickers, 2006: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105, 351–365.CrossRefGoogle Scholar
  28. Malek, E., T. Davis, R. S. Martin, and P. J. Silva, 2006: Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmos. Res., 79, 108–122.CrossRefGoogle Scholar
  29. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.CrossRefGoogle Scholar
  30. Olofson, K. F. G., P. U. Andersson, M. Hallquist, E. Ljungström, L. Tang, D. Chen, and J. B. C. Pettersson, 2009: Urban aerosol evolution and particle formation during wintertime temperature inversions. Atmos. Environ., 43, 340–346.CrossRefGoogle Scholar
  31. Palffy, E., 1995: Temperature inversion in the Csik basin. Acta Climatol., 28-29, 41–45.Google Scholar
  32. Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784–801.CrossRefGoogle Scholar
  33. Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773–1794.CrossRefGoogle Scholar
  34. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR, Boulder, 101 pp.Google Scholar
  35. Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteor., 21, 270–289.CrossRefGoogle Scholar
  36. Whiteman, C. D., and T. B. McKee, 1977: Observations of vertical atmospheric structure in a deep mountain valley. Arch. Met. Geophys. Biokl. Ser. A., 26, 39–50.CrossRefGoogle Scholar
  37. Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds within a valley. J. Appl. Meteor., 32, 1669–1982.CrossRefGoogle Scholar
  38. Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado plateau basin. J. Appl. Meteor., 38, 1103–1117.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  2. 2.Information and Research Institute of Meteorology, Hydrology and EnvironmentUlaanbaatarMongolia

Personalised recommendations