Skip to main content
Log in

Examination of physical processes of convective cell evolved from a MCS — Using a different model initialization

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The present study is focused on examination of the physical processes of convective cell evolved from a MCS occurred on 4 November 2011 over Genoa, Italy. The Quantitative Precipitation Forecasts (QPF) have been performed using WRF v3.6 model under different configurations and cloud permitting simulations. The results indicate underestimation of the amount of precipitation and spatial displacement of the area with a peak 24-h accumulated rainfall in (mm). Our main objective in the research is to test the cloud model ability and performance in simulation of this particular case. For that purpose a set of sensitivity experiments under different model initializations and initial data have been conducted. The results also indicate that the merging process apparently alters the physical processes through low- and middle-level forcing, increasing cloud depth, and enhancing convection. The examination of the microphysical process simulated by the model indicates that dominant production terms are the accretion of rain by graupel and snow, probabilistic freezing of rain to form graupel and dry and wet growth of graupel. Experiment under WRF v3.6 model initialization has shown some advantage in simulation of the physical processes responsible for production and initiation of heavy rainfall compared to other model runs. Most of the precipitation came from ice-phase particles-via accretion processes and the graupel melting at temperature T0 ≥ 0°C. The rainfall intensity and accumulated rainfall calculated by the model closely reflect the amount of rainfall recorded. Thus, the main benefit is to better resolve convective showers or storms which, in extreme cases, can give rise to major flooding events. In such a way, this model may become major contributor to improvements in weather analysis and small-scale atmospheric predictions and early warnings of such subscale processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedrina, T., A. Parodi, A. Quarati, and A. Clematis, 2012: ICT approaches to integrating institutional and non-institutional data services for better understanding of hydro-meteorological phenomena. Nat. Hazards Earth Syst. Sci., 12, 1961–1968.

    Article  Google Scholar 

  • Blamey, R. C., and C. J. C. Reason, 2009: Numerical simulation of a mesoscale convective system over the east coast of South Africa. Tellus, 61A, 17–34.

    Article  Google Scholar 

  • Bresson, E., V. Ducrocq, O. Nuissier, D. Ricard, and C. de Saint-Aubin, 2012: Idealized numerical simulations of quasi-stationary convective systems over the Northwestern Mediterranean complex terrain. Quart. J. Roy. Meteor. Soc., 138, 1751–1763.

    Article  Google Scholar 

  • Buzzi, A., S. Davolio, P. Malguzi, O. Drofa, and D. Mastrangelo, 2013: Heavy rainfall episodes over Liguria of autumn 2011: Numerical forecasting experiments. Nat. Hazards Earth Syst. Sci. Discuss., 1, 7093–7135.

    Article  Google Scholar 

  • Byun, U-Y., J. Hong, S.-Y. Hong, and H. H. Shin, 2015: Numerical simulation of heavy rainfall over central of Korea on 21 September 2010 using the WRF model. Adv. Atmos. Sci., 32, 855–869.

    Article  Google Scholar 

  • Chen, S. S., Houze, R. A., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 1380–1409.

    Article  Google Scholar 

  • Clark, P. A., K. A. Browing, C. J. Morcrette, A. M. Blyth, R. M. Forbes, B. Brooks, and F. Perry, 2013a: The evolution of an MCS over southern England. I: Observations. Quart. J. Roy. Meteor. Sci., 140, 439–457.

    Article  Google Scholar 

  • Clark, P. A., K. A. Browing, R. M. Forbes, C. J. Morcrette, A. M. Blyth, and H. W. Lean, 2013b: The evolution of an MCS over southern England. II: Model simulations and sensitivity to microphysics. Quart. J. Roy. Meteor. Sci., 140, 458–479.

    Article  Google Scholar 

  • Coniglio, M. C, E. Harold, S. J. Brooks, S. Weiss, and F. Corfidi, 2007: Forecasting the Mainte-nance of Quasi-Linear Mesoscale Convective Systems. Wea. Forecasting, 22, 556–570.

    Article  Google Scholar 

  • Ćurić, M., 2000: Cloud dynamics. Belgrade University Serbia Press, 250 pp.

    Google Scholar 

  • Ćurić, M., and D. Janc, 1995: On the sensitivity of the continuous accretion rate equation used in bulk-water parameterization schemes. Atmos. Res., 39, 313–332.

    Article  Google Scholar 

  • Ćurić, M., and D. Janc, 1997: On the sensitivity of hail accretion rates in numerical modeling. Tellus, 49, 100–107.

    Article  Google Scholar 

  • Ćurić, M., and D. Janc, 2012: Differential heating influence on hailstorm vortex pair evolution. Quart. J. Roy. Meteor. Soc., 138, 72–80.

    Article  Google Scholar 

  • Ćurić, M., D. Janc, and V. Vučković, 2009: The influence of merging and individual storm splitting on mesoscale convective system formation. Atmos. Res., 93, 21–29.

    Article  Google Scholar 

  • De Lima, E., E. L. Nascimento, and K. K. Droegemeier, 2005: Dynamic Adjustment in a Numerically Simulated Mesoscale Convective System: Impact of the Velocity Field. J. Atmos. Sci., 63, 2246–2268.

    Google Scholar 

  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Article  Google Scholar 

  • Durran, D. R., 1981: The Effects of Moisture on Mountain Lee Waves. Ph.D. Thesis, Masschussets Institute of Technology, (NTIS PB 82126621).

    Google Scholar 

  • Goyens, C., D. Lauwaet, M. Schröder, M. Demuzere, V. Lipzig, and P. M. Nicole, 2012: Tracking mesoscale convective systems in the Sahel: relation between cloud parameters and precipitation. Int. J. Climatol., 32, 1921–1934.

    Article  Google Scholar 

  • Fiori, E., A. Comellas, L. Molini, N. Rebora, F. Siccardi, D. J. Gochis, S. Tanelli, and A. Parodi, 2014: Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res., 138, 13–29.

    Article  Google Scholar 

  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. In Severe Convective Storms. Amer. Meteor. Soc., 323–357.

    Google Scholar 

  • Hsie, E-Y., R. D. Farley, and R. D. Orville, 1980: Numerical simulation of ice-phase convective cloud seeding. J. Appl. Meteorol., 19, 950–977.

    Article  Google Scholar 

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

    Google Scholar 

  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, doi:10.1029/2004RG000150.

    Google Scholar 

  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430–444.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Marsham, J. H., and D. J. Parker, 2006: Secondary initiation of multiple bands of cumulonimbus over southern Britain. Part II. Dynamics of secondary initiation. Quart. J. Roy. Meteor. Sci., 132, 1053–1072.

    Article  Google Scholar 

  • Mathon, V., L. Henri, and L. Thierry, 2002: Mesoscale Convective System Rainfall in the Sahel. J. Appl. Meteor., 41, 1081–1092.

    Article  Google Scholar 

  • Mrowiec, A. A., C. Rio, A. M. Fridlind, A. S. Ackerman, A. S. Del Genio, O. M. Pauluis, A. C. Varble, and J. Fan, 2012: Analysis of cloudresolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res., 117, D19201, doi: 10.1029/2012JD017759.

    Article  Google Scholar 

  • Nachamkin, J. E., and W. R. Cotton, 1999: Interactions between a Developing Mesoscale Convective System and Its Environment. Part II: Numerical Simulation. Mon. Wea. Rev., 128, 1225–1244.

    Article  Google Scholar 

  • Nakazawa, T., 1988: Tropical cloud clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823–839.

    Google Scholar 

  • Orville, H. D., and F. J. Kopp, 1977: Numerical simulation of the history of a hailstorm. J. Atmos. Sci., 34, 1596–1618.

    Article  Google Scholar 

  • Parodi, A., G. Boni, L. Ferraris, F. Siccardi, P. Pagliara, E. Trovatore, E. Foufoula-Georgiou, and D. Kranzlmueller, 2012: The “perfect storm”: from across the Atlantic to the hills of Genoa. EOS., 93, 225–226.

    Article  Google Scholar 

  • Parker, M. D., and R. H. Johnson, 2004: Structures and Dynamics of Quasi-2D Mesoscale Convective Systems. J. Atmos. Sci., 61, 545–567.

    Article  Google Scholar 

  • Pulvirenti, L., M. Chini, S. Marzano, N. Pierdicca, S. Mori, L. Guerriero, G. Boni, and L. Candela, 2011: Detection of floods and heavy rain using Cosmo-SkyMed data: The event in Northwestern Italy of November 2011. 2012 IEEE Int. Geosci. Remote Sens. Symp., Munich, 3026–3029.

    Google Scholar 

  • Rebora, N., and Coauthors, 2013: Extreme Rainfall in the Mediterranean: What Can We Learn from Observations? J. ydrometeor., 14, 906–922.

    Article  Google Scholar 

  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a Simulated Mesovortex within a Mesoscale Convective System. J. Atmos. Sci., 69, 3372–3390.

    Article  Google Scholar 

  • Smith, P. L., G. G. Myers, and H. D. Orville, 1975: Radar reflectivity calculations on numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156–1165.

    Article  Google Scholar 

  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299–307.

    Article  Google Scholar 

  • Silvestro, F., S. Gabellani, F. Giannoni, A. Parodi, N. Rebora, R. Rudari, and F. Siccardi, 2012: A hydrological analysis of the 4 November 2011 event in Genoa. Nat. Hazards Earth Syst. Sci., 12, 2743–2752.

    Article  Google Scholar 

  • Spiridonov, V., and M. Ćurić, 2003: Application of a cloud model in simulation of atmospheric sulfate transport and redistribution. Part I: Model description. Idojárás, 107, 85–115.

    Google Scholar 

  • Spiridonov, V., and M. Ćurić, 2006: A three-dimensional modeling studies of hailstorm seeding. J. Wea. Mod., 38, 31–37.

    Google Scholar 

  • Spiridonov, V., Z. Dimitrovski, and M. Ćurić, 2010: A Three-Dimensional Simulation of Supercell Convective Storm. Adv. Meteor., 2010, doi: 10.1155/2010/234731.

    Google Scholar 

  • Telenta, B., and N. Aleksic, 1988: A three-dimensional simulation of the 17 June 1978 HIPLEX case with observed ice multiplication. 2nd International Cloud Modeling Workshop, Toulouse, WMO/TD No. 268, 277–285.

    Google Scholar 

  • van Weverberg, K., and Coauthors, 2013: The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific. J. Atmos. Sci., 70, 1104–1128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlado Spiridonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, V., Ćurić, M. Examination of physical processes of convective cell evolved from a MCS — Using a different model initialization. Asia-Pacific J Atmos Sci 52, 263–279 (2016). https://doi.org/10.1007/s13143-015-0088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-015-0088-z

Key words

Navigation