Skip to main content
Log in

Impact of refined land surface properties on the simulation of a heavy convective rainfall process in the Pearl River Delta region, China

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The location and occurrence time of convective rainfalls have attracted great public concern as they can lead to terrible disasters. However, the simulation results of convective rainfalls in the Pearl River Delta region often show significant discrepancies from the observations. One of the major causes lies in the inaccurate geographic distribution of land surface properties used in the model simulation of the heavy precipitation. In this study, we replaced the default soil and vegetation datasets of Weather Research and Forecasting (WRF) model with two refined datasets, i.e. the GlobCover 2009 (GLC2009) land cover map and the Harmonized World Soil Database (HWSD) soil texture, to investigate the impact of vegetation and soil on the rainfall patterns. The result showed that the simulation patterns of convective rainfalls obtained from the coupled refined datasets are more consistent with the observations than those obtained from the default ones. By using the coupled refined land surface datasets, the overlap ratio of high precipitation districts reached 36.3% with a variance of 28.5 km from the observed maximum rainfall position, while those of the default United States Geological Survey (USGS) dataset and Moderate Resolution Imaging Spectroradiometer (MODIS) dataset are 17.0%/32.8 km and 24.9%/49.0 km, respectively. The simulated total rainfall amount and occurrence time using the coupled refined datasets are the closest to the observed peak values. In addition, the HWSD soil data has improved the accuracy of the simulated precipitation amount, and the GLC2009 land cover data also did better in catching the early peak time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Arino, O., P. Bicheron, F. Achard, J. Latham, R. Witt, and J. L. Weber, 2008: GlobCover: the most detailed portrait of Earth. Bull.-Eur. Space Agency, 136: 24–31.

    Google Scholar 

  • Bontemps, S., P. Defourny, E. Van Bogaert, O. Arino, V. Kalogirou, and J. R. Perez, 2011: GlobCover 2009: products description and validation report.

    Google Scholar 

  • Brovkin, V., M. Claussen, E. Driesschaert, T. Fichefet, D. Kicklighter, M. F. Loutre, and A. Sokolov, 2006: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim. Dynam., 26, 587–600.

    Article  Google Scholar 

  • Cai, R., M. T. Jiang, Y. Y. Zhao, and H. W. Feng, 2012: Features and causality analysis on the unusual rainstorm in Guangzhou during October, 2011. Guangdong Meteorology, 34, 10–14 (in Chinese).

    Google Scholar 

  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the Southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785–807.

    Article  Google Scholar 

  • Chang, M., S. F. Fan, and X. M. Wang, 2014: Impact of refined land-cover data on WRF performance over the Pearl River Delta region, China. Acta Scientiae Circumstantiae, 34, 1922–1933 (in Chinese).

    Article  Google Scholar 

  • Chen, F., 2007: The Noah Land Surface Model in WRF: A short tutorial. LSM group meeting.

    Google Scholar 

  • Chen, F., and R. Avissar, 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 1382–1401.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the peen state-NCAR MM5 modeling system part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Chen, F., T. T. Warner, and K. Manning, 2001: Sensitivity of orographic moist convection to landscape variability: A study of the Buffalo Creek, Colorado, Flash Flood Case of 1996. J. Atmos. Sci., 58, 3204–3223.

    Article  Google Scholar 

  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273–288.

    Article  Google Scholar 

  • Chen, X., 2007: A tale of two regions in China rapid economic development and slow industrial upgrading in the Pearl River and the Yangtze River Deltas. Int. J. Comp. Sociol., 48, 167–201.

    Article  Google Scholar 

  • Duda, M., 2010: Advanced features of the WRF reprocessing system. WRF Users’ Tutorial.

    Google Scholar 

  • Dudhia, J., 2009: WRF version 3.1: New features and updates. 10th Annual WRF Users’ Workshop.

    Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Ganyo, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 108, 1–16.

    Article  Google Scholar 

  • FAO, IIASA, ISRIC/ISSCAS, JRC. 2012: Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

    Google Scholar 

  • Foley, J. A., and Coauthors, 2005: Global consequences of land use: Review. Science, 309, 570–574.

    Article  Google Scholar 

  • Gao, H., and G. Jia, 2013: Assessing disagreement and tolerance of misclassification of satellite-derived land cover products used in WRF model applications. Adv. Atmos. Sci., 30, 125–141.

    Article  Google Scholar 

  • Gao, Y., and Coauthors, 2008: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. J. Geophys. Res. Atmos., 113, 1–19.

    Article  Google Scholar 

  • Hibbard, K., A. Janetos, D. P. van Vuuren, J. Pongratz, S. K. Rose, R. Betts, M. Herold, and J. J. Feddema, 2010: Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. Int. J. Climatol., 30, 2118–2128.

    Article  Google Scholar 

  • Hong, S., V. Lakshmi, E. E. Small, F. Chen, M. Tewari, and K. W. Manning, 2009: Effects of vegetation and soil moisture on the simulated surface processes from the coupled WRF/Noah model. J. Geophys. Res. Atmos., 114, 1–13.

    Google Scholar 

  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140–161.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140.

    Article  Google Scholar 

  • Kummerow, C., J. Simpson, O. Thiele, W. Barnes, A. T. C. Chang, E. Stocker, and K. Nakamura, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982.

    Article  Google Scholar 

  • Li, J. N., A. F. Ye, Y. H. Xu, Z. F. Wu, R. Y. He, and R. S. Cai, 2011: Evolution of moist potential vorticity during a warm-zone heavy rainfall event in the Pearl River Delta. J. Trop. Meteor., 17, 310–316 (in Chinese).

    Google Scholar 

  • Liao, J. B., X. M. Wang, B. C. Xia, T. J. Wang, and Z. M. Wang, 2012: The effects of different physics and cumulus parameterization schemes in WRF on heavy rainfall simulation in PRD. J. Trop. Meteor., 28, 461–470 (in Chinese).

    Google Scholar 

  • Lim, Y. J., K. Y. Byun, T. Y. Lee, H. Kwon, J. Hong, and J. Kim, 2012: A land data assimilation system using the MODIS-derived land data and its application to numerical weather prediction in East Asia. Asia-Pac. J. Atmos. Sci., 48, 83–95.

    Article  Google Scholar 

  • Lin, W. S., B. M. Wang, J. Li, X. M. Wang, L. Zeng, L. Yang, and H. Lin, 2010: The impact of urbanization on the monthly averaged diurnal cycle in October 2004 in the Pearl River Delta region. Atmósfera, 23, 37–51.

    Google Scholar 

  • Lo, J. C. F., A. K. H. Lau, J. C. H. Fung, and F. Chen, 2006: Investigation of enhanced cross-city transport and trapping of air pollutants by coastal and urban land-sea breeze circulations. J. Geophys. Res. Atmos., 111, 1–13.

    Article  Google Scholar 

  • Miao, S. G., F. Chen, Q. Li, and S. Fan, 2011: Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806–825.

    Article  Google Scholar 

  • Miller, D. A., and R. A. White, 1988: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, 1–26.

    Article  Google Scholar 

  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor., 3, 283–300.

    Article  Google Scholar 

  • National Statistical Bureau, 2011: Guangdong Statistical Yearbook. China Statistics Press.

    Google Scholar 

  • NCAR, 2012: A Description of the Advanced Research WRF Version 3.4. National Center for Atmospheric Research, Boulder, Colorado.

    Google Scholar 

  • NCAR, 2014: The Advanced Research WRF (ARW) Version 3 Modeling System User’s Guide. National Center for Atmospheric Research, Boulder, Colorado.

    Google Scholar 

  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151–177.

    Article  Google Scholar 

  • Pielke, R. A., A. Adegoke, C. A. Beltran-Przekurat, and C. A. Hiemster, 2006: An overview of regional land use and land cover impacts on rainfall. Tellus B, 59, 587- 601.

    Article  Google Scholar 

  • Pielke, R. A., T. J. Lee, J. H. Copeland, J. L. Eastman, C. L. Ziegler, and C. A. Finley, 1997: Use of USGS-provided data to improve weather and climate simulations. Ecol. Appl., 7, 3–21.

    Google Scholar 

  • Roxy, M. S., V. B. Sumithranand, and G. Renuka, 2010: Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala. J. Earth Syst. Sci., 119, 507–517.

    Article  Google Scholar 

  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, 1–27.

    Article  Google Scholar 

  • Shi, X. Z., D. S. Yu, E. D. Warner, X. Z. Pan, G. W. Peterson, Z. G. Gong, and D. C. Weindorf, 2004: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz., 45, 129–136.

    Google Scholar 

  • Situ, S. P., X. M. Wang, A. Guenther, Z. W. Chai, and R. R. Deng, 2009: Typical summertime isoprene emission from vegetation in the Pearl River Delta region, China. Acta Scientiae Circumstantiae, 29, 822–829 (in Chinese).

    Google Scholar 

  • Townshend, J. R. G., 1994: Global data sets for land applications from the advanced very high resolution radiometer: an introduction. Int. J. Remote Sens., 15, 3319–3332.

    Article  Google Scholar 

  • Wang, X. M., J. B. Liao, J. Zhang, C. Shen, W. H. Chen, and B. C. Xia, 2014: A numeric study of regional climate change induced by urban expansion in Pearl River Delta, China. J. Appl. Meteor. Climatol., 53, 346–362.

    Article  Google Scholar 

  • Wang, X. M., and Coauthors, 2013: Atmospheric nitrogen deposition to forest and estuary environments in the Pearl River Delta regional, southern China. Tellus B., 65, 20480.

    Google Scholar 

  • Wei, S. G., Y. J. Dai, B. Y. Liu, A. Zhu, Q. Duan, L. Wu, and Y. Zhang, 2013: A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst., 5, 212–224.

    Article  Google Scholar 

  • Xu, J. J., X. G. Gao, and S. Sorooshian, 2004: Model study of soil-moisture influence on precipitation seesaw in the southern United States. Tellus, 56, 514–519.

    Article  Google Scholar 

  • Ye, Y., H. G. Zhang, K. Liu, and Q. Wu, 2013: Research on the influence of site factors on the expansion of construction land in the Pearl River Delta, China: By using GIS and remote sensing. Int. J. Appl. Earth Obs., 21, 366–373.

    Article  Google Scholar 

  • Zhang, C. L., F. Chen, S. G. Miao, Q. C. Li, X. A. Xia, and C. Y. Xuan, 2009: Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res. Atmos., 114, 1–26.

    Google Scholar 

  • Zhang, J. Y., W. J. Dong, L. Y. Wu, J. F. Wei, P. Y. Chen, and D. K. Lee, 2005: Impact of land use changes on surface warming in China. Adv. Atmos. Sci. 22, 343–348.

    Article  Google Scholar 

  • Zhang, N., Q. L. Williams, and H. P. Liu, 2010: Effects of land-surface heterogeneity on numerical simulations of mesoscale atmospheric boundary layer processes. Theor. Appl. Climatol., 102, 307–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Fan or Xuemei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, M., Fan, S., Fan, Q. et al. Impact of refined land surface properties on the simulation of a heavy convective rainfall process in the Pearl River Delta region, China. Asia-Pacific J Atmos Sci 50 (Suppl 1), 645–655 (2014). https://doi.org/10.1007/s13143-014-0052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0052-3

Key words

Navigation