Skip to main content

Examinations of cloud variability and future change in the coupled model intercomparison project phase 3 simulations

Abstract

Low-level cloud variability is critical to the radiation balance of Earth due to its wide spatial coverage. Using the adjusted International Satellite Cloud Climatology Project (ISCCP) observations of Clement et al. (2009), and the Coupled Model Intercomparison Project Phase 3 (CMIP3) model simulations, this study examines the observed and the simulated low-cloud variations and their relationships with large-scale environmental variables. From the observational analysis, significant correlations are found between low clouds and those of sea surface temperature (SST), lower tropospheric stability (LTS), and sea level pressure (SLP) over tropical marine areas of low cloud prevailing regions during most of the year. Increase of SST coincides with the reduction of LTS and increased vertical motion, which tends to reduce low-level clouds in subtropical oceans. Among the 14 models investigated, CGCM3 and HadGEM1 exhibit more realistic representation of the observed relationship between low-level clouds and large-scale environments. In future climate projection, these two models show a good agreement in the reduction of low-cloud throughout much of the global oceans in response to greenhouse gas forcing, suggesting a positive low-cloud feedback in a climate change context.

This is a preview of subscription content, access via your institution.

References

  1. Bony, S., and J. L. Dufresne, 2005: Marine boundary-layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    Article  Google Scholar 

  2. Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes?. J. Climate, 19, 3445–3482.

    Article  Google Scholar 

  3. Broccoli, A. J., and S. A. Klein, 2010: Comment on “Observational and model evidence for positive low-level cloud feedback”. Science, 329, 2–7.

    Article  Google Scholar 

  4. Campbell, G., 2004: View angle dependence of cloudiness and the trend in ISCCP cloudiness, paper presented at 13th Conf. on Satellite Meteor. and Ocean. Am. Meteorol. Soc. Norfolk. Va. 20–23.

    Google Scholar 

  5. Clement, A., C. R. Burgman, and J. R.,, Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460–464, doi:10.1126/science.11711255.

    Article  Google Scholar 

  6. George, R. C., and R. Wood, 2010: Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean. Atmos. Chem. Phys., 10, 4047–4063, doi:10.5194/acp-10-4047-2010.

    Article  Google Scholar 

  7. Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli, 2003: The advanced very high resolution radiometer pathfinder atmosphere (PATMOS) climate dataset: a resource for climate research. Bull. Amer. Meteor. Soc., 84, 785–793.

    Article  Google Scholar 

  8. Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.

    Article  Google Scholar 

  9. Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12, 2359–2374.

    Article  Google Scholar 

  10. Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvyaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

    Article  Google Scholar 

  11. Norris, J. R., 2000: What can cloud observations tell us about climate variability?. Space Sci. Rev., 94, 375–380.

    Article  Google Scholar 

  12. Norris, J. R., 2005: Trends in upper-level cloud cover and surface divergence over the tropical Indo-Pacific Ocean between 1952–1997. J. Geophys. Res., 110, D21110, doi:10.1029/2005JD006183.

    Article  Google Scholar 

  13. Norris, J. R., and C. B. Leovy, 1994: Interannual variability n stratiform cloudiness and sea surface temperature. J. Climate, 7, 1915–1925.

    Article  Google Scholar 

  14. National Research Council, 2003: Understanding Climate Change Feedbacks. National Academies Press, Washington, D. C., 152 pp.

    Google Scholar 

  15. Ramaswamy, V., and Coauthors, 2001: Radiative Forcing of Climate Change. Chapter 6, 349–416.

  16. Randall, D. A., and Coauthors, 2006: Cloud feddbacks. In: Frontiers in the Science of Climate Modeling Kiehl, J. T., and V. Ramanathan (eds.). Proc. of a symp. in honor of Professor Robert, D. Cess.

    Google Scholar 

  17. Rossow, W. B., and R. A. Schiffer., 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.

    Article  Google Scholar 

  18. Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the world climate research programme. Bull. Amer. Meteor. Soc., 64, 779–784.

    Google Scholar 

  19. Slingo, A., 1990: Sensitivity of the earth’s radiation budget to changes in low clouds. Nature 343, 49–51.

    Article  Google Scholar 

  20. Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 3354–3360.

    Article  Google Scholar 

  21. Stephens, G. L., 2005: Cloud feedbacks in the climate system: a critical review. J. Climate, 18, 237–273.

    Article  Google Scholar 

  22. Stowasser, M., and K. Hamilton, 2006: Relationship between shortwave cloud radiative forcing and local meteorological variables compared in observations and several global climate models. J. Climate, 19, 4344–4359.

    Article  Google Scholar 

  23. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc. 131, 2961–3012, doi:10.1256/qj.04.176.

    Article  Google Scholar 

  24. Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim. Dynam., 27, 17–38.

    Article  Google Scholar 

  25. Williams, K. D., and Coathours, 2006: Evaluation of a component of the cloud response to climate change in an intercomparison of climate models. Clim. Dynam., 26, 145–165.

    Article  Google Scholar 

  26. Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low clouds: The importance of mesoscale cellular convection. J. Climate, 19, 1748–1764.

    Article  Google Scholar 

  27. Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 169–192.

    Article  Google Scholar 

  28. Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three US AGCMs sorted into regimes using mid-tropospheric vertical velocity. Clim. Dynam., 27, 261–279.

    Article  Google Scholar 

  29. Wylie, D., D. L. Jackson, W. P. Mensel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 3021–3031.

    Article  Google Scholar 

  30. Zhang, M., 2004: Cloud-climate feedback: how much do we know? In: Observation, Theory and Modeling of Atmospheric Variability, World Scientific Series on Meteorology of East Asia. Vol. 3 Zhu et al. (eds). World Scientific Publishing Co., Singapore, 632 pp

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myong-In Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, SH., Lee, MI. & Kim, OY. Examinations of cloud variability and future change in the coupled model intercomparison project phase 3 simulations. Asia-Pacific J Atmos Sci 50, 481–495 (2014). https://doi.org/10.1007/s13143-014-0038-1

Download citation

Key words

  • Low-level clouds
  • cloud feedback
  • climate change
  • CMIP3
  • global warming
  • cloud radiative effects