Asia-Pacific Journal of Atmospheric Sciences

, Volume 50, Issue 1, pp 83–104 | Cite as

Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations

Review

Abstract

Dynamical downscaling has been recognized as a useful tool not only for the climate community, but also for associated application communities such as the environmental and hydrological societies. Although climate projection data are available in lower-resolution general circulation models (GCMs), higher-resolution climate projections using regional climate models (RCMs) have been obtained over various regions of the globe. Various model outputs from RCMs with a high resolution of even as high as a few km have become available with heavy weight on applications. However, from a scientific point of view in numerical atmospheric modeling, it is not clear how to objectively judge the degree of added value in the RCM output against the corresponding GCM results. A key factor responsible for skepticism is based on the fundamental limitations in the nesting approach between GCMs and RCMs. In this article, we review the current status of the dynamical downscaling for climate prediction, focusing on basic assumptions that are scrutinized from a numerical weather prediction (NWP) point of view. Uncertainties in downscaling due to the inconsistencies in the physics packages between GCMs and RCMs were revealed. Recommendations on how to tackle the ultimate goal of dynamical downscaling were also described.

Keywords

Regional climate dynamical downscaling climate prediction NWP RCM GCM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandru, A., R. de Elia, R. Laprise, L. Separovic, and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 1666–1686.CrossRefGoogle Scholar
  2. Annamalai, H., J. Sling, K. R. Sperber, and K. Hodges, 1999: The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP-NCAR reanalysis. Mon. Wea. Rev., 127, 1157–1186.CrossRefGoogle Scholar
  3. Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1335.CrossRefGoogle Scholar
  4. Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 2493–2525.CrossRefGoogle Scholar
  5. —, and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 1977–1992, doi: 10.1175/JAS-D-12-0330.1.CrossRefGoogle Scholar
  6. Bennett, A. F., 1976: Open boundary conditions for dispersive waves. J. Atmos. Sci., 33, 176–182.CrossRefGoogle Scholar
  7. Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance sub-seasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 91, 1397–1406, doi: 10.1175/2010BAMS3013.1.CrossRefGoogle Scholar
  8. Castro, C. L., R. A. Pielke Sr., and G. Leoncini, 2005: Dynamical downs-caling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res., 110, D05108, doi:10.1029/2004JD004721.Google Scholar
  9. Davies, H. C., 1976: A lateral boundary formulation for multi-level pre-diction models. Quart. J. Roy. Meteor. Soc., 102, 405–418, doi:10.1002/ qj.49710243210.Google Scholar
  10. Di Luca, A., R. Elía, and R. Laprise, 2013: Potential for small scale added value of RCM’s downscaled climate change signal. Clim. Dynam., 40, 601–618.CrossRefGoogle Scholar
  11. Dimitrijevic, M., and R. Laprise, 2005: Validation of the nesting technique in a RCM and sensitivity tests to the resolution of the lateral boundary conditions during summer. Clim. Dynam., 25, 555–580.CrossRefGoogle Scholar
  12. de Ela, R., R. Laprise, and B. Denis, 2002: Forecasting skill limits of nested limited-area models: a perfect-model approach. Mon. Wea. Rev., 130, 2006–2023.CrossRefGoogle Scholar
  13. Denis, B., R. Laprise, D. Caya, and J. Côté, 2002: Downscaling ability of one-way nested regional climate model: the Big-Brother Experiment. Clim. Dynam., 18, 627–646.Google Scholar
  14. Decker, M., M. A. Brunke, Z. Wang, K. Sakaguchi, X. Zeng, and M. G. Bosilovich, 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 1916–1944.CrossRefGoogle Scholar
  15. Dudhia, J., 1993: A nonhydrostatic version of the Penn State / NCAR mesoscale model: Validation tests and simulations of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.CrossRefGoogle Scholar
  16. Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models add value to global model data: A review and selected examples. Bull. Amer. Meteor. Soc., 92, 1181–1192.CrossRefGoogle Scholar
  17. Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, and J. L. McGregor, 2006: Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J. Geophys. Res., 111, D16104, doi:10.1029/2005JD006520.CrossRefGoogle Scholar
  18. Fu, C., and Coauthors, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257–266.CrossRefGoogle Scholar
  19. Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model.J. Climate, 3, 941–963.CrossRefGoogle Scholar
  20. —, and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 2325–2347.CrossRefGoogle Scholar
  21. —, and X. Bi, 2000: A study of internal variability of a regional climate model. J. Geophys. Res., 105, 29503–29521.Google Scholar
  22. —, M. R. Marinucci, G. Bates, and G. DeCanio, 1993: Development of a second generation regional climate model (RegCM2). II. Con-vective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.Google Scholar
  23. —, and Coauthors, 2001: Regional climate information-evaluation and projections. Chapter 10 of: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (J. T. Houghton et al., eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 583–638.Google Scholar
  24. Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/ 2007JD008972.Google Scholar
  25. Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. Discuss., 13, 23845–23893, doi:10.5194/acpd-13-23845-2013.CrossRefGoogle Scholar
  26. Gutmann, E. D., R. M. Rasmussen, C. Liu, K. Ikeda, D. J. Gochis, M. P. Clark, J. Dudhia, and G. Thompson, 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262–281.CrossRefGoogle Scholar
  27. Ham, S., and S.-Y. Hong, 2013: Sensitivity of simulated intraseasonal oscillation to four convective parameterization schemes in a coupled climate model. Asia-Pac. J. Atmos. Sci., 49, 483–496.CrossRefGoogle Scholar
  28. Hong, S.-Y., and E.-C. Chang, 2012: Spectral nudging sensitivity experi-ments in a regional climate model. Asia-Pac. J. Atmos. Sci., 48, 345–355.CrossRefGoogle Scholar
  29. —, and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6–ES9, http://dx.doi.org/10.1175/2011BAMS3224.1.Google Scholar
  30. —, and E. Kalnay, 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma-Texas drought. Nature, 408, 842–844.Google Scholar
  31. —, and H.-L. Pan, 1998: Convective trigger function for a mass flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 2599–2620.Google Scholar
  32. —, and H.-L. Pan, 2000: Impact of soil moisture anomalies on seasonal, summertime circulation over North America in a regional climate model. J. Geophys. Res., 105, D24, 29625–29634.Google Scholar
  33. —, H. M. Kim, J.-E. Kim, S.-O. Hwang, and H. Park, 2011: The impact of model uncertainties on the analyzed data in a global data assimilation system. Terr. Atmos. Oceanic. Sci., 22, 41–47.Google Scholar
  34. —, and Coauthors, 2013a: The Global/Regional Integrated Model System (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219–243, doi:10.1007/s13143-013-0023-0.Google Scholar
  35. —, M.-S. Koo, J. Jang, J.-E. E. Kim, H. Park, M.-S. Joh, J.-H. Kang, and T.-J. Oh, 2013b: An evaluation of the software system dependency of a global atmospheric model. Mon. Wea. Rev., 141, 4165–4172, doi: 10.1175/mwr-d-12-00352.1.Google Scholar
  36. Hu, H., and W. T. Liu, 2002: QuikSCAT reveals the surface circulation of the Catalina Eddy. Geophys. Res. Lett., 29, 1821, doi:10.1029/2001GL-014203, 2002.CrossRefGoogle Scholar
  37. Huffman, G.J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydro-meteor., 2, 36–50.Google Scholar
  38. Hwang, S.-O., and S.-Y. Hong, 2012: The impact of observation systems on medium-range weather forecasting in a global forecast system. Asia-Pac. J. Atmos. Sci., 48, 159–170.CrossRefGoogle Scholar
  39. —, and —, 2010: Investigation of moisture field assimilation in the NCEP/DOE reanalysis system. J. Atmos. Sol. -Terr. Phys., 72, 556–564.CrossRefGoogle Scholar
  40. —, —, and M. Kanamitsu, 2010: Impacts of assimilated data on reanalysis climatology. Asia-Pac. J. Atmos. Sci., 46, 185–197.Google Scholar
  41. Im, E.-S., J.-B. Ahn, and D.-W. Kim, 2012a: An assessment of future dryness over Korea based on the ECHAM5-RegCM3 model chain underA1B emission scenario. Asia-Pac. J. Atmos. Sci., 48, 325–337, doi: 10.1007/s13143-012-0031-5.CrossRefGoogle Scholar
  42. —, B.-J. Lee, J.-H. Kwon, S.-R. In, and S.-O. Han, 2012b: Potential increase of flood hazards in Korea due to global warming from a high-resolution regional climate simulation. Asia-Pac. J. Atmos. Sci., 48, 107–113, doi:10.1007/s13143-012-0010-x. Intergovernmental Panel on Climate Change (IPCC), 1995: Climate Change 1995. The science of climate change. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Eds, Cambridge University Press, 572 pp.CrossRefGoogle Scholar
  43. —, 2007: Climate Change 2007: Synthesis Report.IPCC, 104 pp.Google Scholar
  44. Jo, S., Y. Lim, J. Lee, H.-S. Kang, and H.-S. Oh, 2012: Bayesian regression model for seasonal forecast of precipitation over Korea. Asia-Pac. J. Atmos. Sci., 48, 205–212, doi:10.1007/s13143-012-0021-7.CrossRefGoogle Scholar
  45. Jolliffe, I. T., and D B. Stephenson, 2011: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd Edition, 292 pp.CrossRefGoogle Scholar
  46. Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 3–26.CrossRefGoogle Scholar
  47. —, and S.-Y. Hong, 2001: Sensitivity of the NCEP regional spectral model to domain size and nesting strategy. Mon. Wea. Rev., 129, 2904–2922.CrossRefGoogle Scholar
  48. —, —, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125–2143.Google Scholar
  49. Kanamitsu, M., and H. Kanamaru, 2007: Fifty-Seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20, 5553–5571.CrossRefGoogle Scholar
  50. —, and L. DeHaan, 2011: The Added Value Index: A new metric to quantify the added value of regional models. J. Geophys. Res., 116, D11106, doi:10.1029/2011JD015597.CrossRefGoogle Scholar
  51. —, E. Yulaeva, H. Li, and S.-Y. Hong, 2013: Catalina Eddy as revealed by the historical downscaling of reanalysis. Asia-Pac. J. Atmos. Sci., 49, 467–481, doi:10.1007/s13143-013-0041-y.Google Scholar
  52. —, K. Yoshimura, Y.-B. Yhang, and S.-Y. Hong, 2010: Errors of interannual variability and trend in dynamical downscaling of reanalysis. J. Geophys. Res., 115, D17115, doi:10.1029/2009JD013511.Google Scholar
  53. Kanamaru, H., and M. Kanamitsu, 2006: Scale selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334–350, doi:10.1175/MWR3294.1.CrossRefGoogle Scholar
  54. Kida, H., T. Koide, H. Sasaki, and M. Chiba, 1991: A new approach for coupling a limited area model to a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723–728.Google Scholar
  55. Kim, J.-W., J.-T. Chang, N. L. Baker, D. S. Wilks, and W. L. Gates, 1984: The statistical problem of climate inversion: Determination of the relation- ship between local and large-scale climate. Mon. Wea. Rev., 112, 2069–2077.CrossRefGoogle Scholar
  56. Kim, J., and Coauthors, 2013: Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim. Dynam., doi:10.1007/s00382-013-1751-7.Google Scholar
  57. Koo, M.-S., and S.-Y. Hong, 2010: Diurnal Variations of Simulated Precipitation over East Asia in Two Regional Climate Models. J. Geophys. Res., 115, D05105, doi:10.1029/2009JD012574.Google Scholar
  58. —, —, and J. Kim, 2009: An evaluation of the tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA) data over South Korea.Asia-Pac. J. Atmos. Sci., 45, 265–282.Google Scholar
  59. Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 3641–3666.CrossRefGoogle Scholar
  60. —, and Coauthors, 2012: Considerations of domain size and large-scale driving for nested regional climate models: Impact on internal variability and ability at developing small-scale details. Climate Change, 181–199.CrossRefGoogle Scholar
  61. Lee, D.-K., D.-H. Cha, C.-S. Jin, and S.-J. Choi, 2013: A regional climate change simulation over East Asia. Asia-Pac. J. Atmos. Sci., 49, 655–664, doi:10.1007/s13143-013-0058-2.CrossRefGoogle Scholar
  62. Lee, J.-W., and S.-Y. Hong, 2013: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol., doi: 10.1007/s00704-013-1034-6.Google Scholar
  63. —, —, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2013: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., doi:10.1007/s00382-013-1841-6Google Scholar
  64. Leung, R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 89–95.CrossRefGoogle Scholar
  65. Li, H., M. Kanamitsu, and S.-Y. Hong, 2012: California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system. J. Geophys. Res., 117, D12118, doi:10.1029/2011-JD017372.Google Scholar
  66. —, —, —, K. Yoshimura, D. R. Cayan, and V. Misra, 2013: A high-resolution ocean-atmosphere coupled downscaling of the present climate over California. Clim. Dynam., doi:10.1007/s00382-013-1670-7.Google Scholar
  67. Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa-Schubert cumulus parameterization. J. Atmos. Sci., 39, 88–103.CrossRefGoogle Scholar
  68. Lorenz, E. N., 1993: The essence of chaos. Seattle, University of Washington Press, 240 pp.CrossRefGoogle Scholar
  69. Lucas-Picher, P., D. Caya, S. Biner, and R. Laprise, 2008: Quantification of the lateral boundary forcing of a regional climate model using an aging tracer. Mon. Wea. Rev., 136, 4980–4996.CrossRefGoogle Scholar
  70. —, F. Boberg, J. H. Christensen, P. B., and P. Berg, 2013: Dynamical downscaling with reinitializations: A method to generate finescale climate datasets suitable for impact studies. J. Hydrometeor., 14, 1159–1174.CrossRefGoogle Scholar
  71. Ma, W., Y. Ma, M. Li, Z. Hu, L. Zhong, Z. Su, H. Ishikawa, and J. Wang, 2009: Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery. Hydrol. Earth Syst. Sci., 13, 57–67, doi:10.5194/hess-13-57-2009.CrossRefGoogle Scholar
  72. Marbaix, P., H. Gallée, O. Brasseur, and J.-P. van Ypersele, 2003: Lateral boundary conditions in regional climate models: A detailed study of the relaxation procedure. Mon. Wea. Rev., 131, 461–479.CrossRefGoogle Scholar
  73. McGregor, J. L., 1997: Regional climate modeling. Meteor. Atmos. Phys., 63, 105–117.CrossRefGoogle Scholar
  74. —, 2013: Recent developments in variable-resolution global climate modelling. Climatic Change, 119, doi:10.1007/s10584-013-0866-5.Google Scholar
  75. —, and Dix, M. R., 2008. An updated description of the conformal-cubic atmospheric model. High Resolution Simulation of the Atmosphere and Ocean, Hamilton, K. and Ohfuchi, W., Eds., Springer, 51–76.Google Scholar
  76. Mesinger, F., and K. Veljovic, 2013: Limited area NWP and regional climate modeling: A test of the relaxation vs Eta lateral boundary conditions. Meteor. Atmos. Phys., 119, 1–16, doi:10.1007/s00703-012-0217-5.CrossRefGoogle Scholar
  77. Mearns, L. O., and Coauthors, 2012: The north American regional climate change assessment program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 1337–1362.CrossRefGoogle Scholar
  78. Misra, V., 2007: Addressing the issue of systematic errors in a regional climate model. J. Climate, 20, 801–818.CrossRefGoogle Scholar
  79. Murphy, J., 1999: An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate, 12, 2256–2284.CrossRefGoogle Scholar
  80. Oh, S.-G., M.-S. Suh, and D.-H. Cha, 2013: Impact of lateral boundary conditions on precipitation and temperature extremes over South Korea in the CORDEX regional climate simulation using RegCM4. Asia-Pac. J. Atmos. Sci., 49, 497–509, doi:10.1007/s13143-013-0044-8.CrossRefGoogle Scholar
  81. Omrani, H., P. Drobinski, and T. Dubos, 2012: Spectral nudging in regional climate modelling: how strongly should we nudge? Quart. J. Roy. Meteor. Soc., 138, 1808–1813, doi: 10.1002/qj.1894.CrossRefGoogle Scholar
  82. Pan, Z., E. Takle, W. Gutowski, and R. Turner, 1999: Long simulation of regional climate as a sequence of short segments. Mon. Wea. Rev., 127, 308–321.CrossRefGoogle Scholar
  83. Park, B.-K., and S.-Y. Hong, 2013: Effects of physics packages on medium-range forecasts in a global forecasting system. J. Atmos. Sol. -Terr. Phys., 100-101, 50–58.CrossRefGoogle Scholar
  84. Peña-Arancibia, J. L., A. I. J. M. van Dijk, L. J. Renzullo, and M. Mulligan, 2013: Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an snsemble method for regions in Australia and South and East Asia. J. Hydrometeor., 14, 1323–1333.CrossRefGoogle Scholar
  85. Pfeifroth, U., R. Mueller, and B. Ahrens, 2013: Evaluation of satellite-based and reanalysis precipitation data in the tropical Pacific. J. Appl. Meteor. Climatol, 52, 634–644.CrossRefGoogle Scholar
  86. Phelps, M. W., A. Kumar, and J. J. O’Brien, 2004: Potential predictability in the NCEP CPC dynamical seasonal forecast system. J. Climate, 17, 3775–3785.CrossRefGoogle Scholar
  87. Pielke, R. A., Sr, 2013: Comments on “The North American Regional Climate Change Assessment Program: Overview of Phase I Results”. Bull. Amer. Meteor. Soc., 1075–1077.Google Scholar
  88. —, and R. L. Wilby, 2012: Regional climate downscaling: What’s the point? Eos. Amer. Geophys. Union, 93, 52–53, doi:10.1029/2012-EO050008.CrossRefGoogle Scholar
  89. Randall, D., M. Khairoutdinov, A. Arakawa, W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.CrossRefGoogle Scholar
  90. Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, and S.-H. Park, 2012: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105.CrossRefGoogle Scholar
  91. —, and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf]..Google Scholar
  92. Schmidli, J., C. M. Goodess, C. Frei, M. R. Haylock, Y. Hundecha, J. Ribalaygua, and T. Schmith, 2007: Statistical and dynamical down-scaling of precipitation: An evaluation and comparison of scenarios for the European Alps.J. Geophys. Res., 112, D04105, doi:10.1029/2005 JD007026.CrossRefGoogle Scholar
  93. Seth, A., and F. Giorgi, 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 2698–2712.CrossRefGoogle Scholar
  94. Shige, S., Y. N. Takayabu, W.-K. Tao, W., and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 7, 1098–1124.CrossRefGoogle Scholar
  95. Shin, H. H., S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 3248–3261, doi: 10.1175/JAS-D-12-0290.1.CrossRefGoogle Scholar
  96. Shrestha, D. L., D. E. Robertson, Q. J. Wang, T. C. Pagano, and H. A. P. Hapuarachchi, 2013: Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose. Hydrol. Earth Syst. Sci., 17, 1913–1931, doi:10.5194/hess-17-1913-2013.CrossRefGoogle Scholar
  97. Stern, W., and K. Miyakoda, 1995: Feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8, 1071–1085.CrossRefGoogle Scholar
  98. Stern, W. F., and J. J. Ploshay, 1992: A scheme for continuous data assimilation. Mon. Wea. Rev., 120, 1417–1432.CrossRefGoogle Scholar
  99. Sugi, M., R. Kawamura, and N. Sato, 1997: A study of SST-forced variability and potential predictability of seasonal mean fields using the JMA global model. J. Meteor. Soc. Japan, 75, 717–736.Google Scholar
  100. Sun, L., H. Li, S. E. Zebiak, D. F. Moncunill, F. D. A. D. S. Filho, and A. D. Moura, 2006: An operational dynamical downscaling prediction system for Nordeste Brazil and the 2002-04 real-time forecast evaluation. J. Climate, 19, 1990–2007.CrossRefGoogle Scholar
  101. Takle, E. S., and Coauthors, 1999: Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results. J. Geo-phys. Res., 104(D16), 19443–19461, doi:10.1029/1999JD900352.CrossRefGoogle Scholar
  102. Thatcher M., and J. L. McGregor, 2009: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon. Wea. Rev., 137, 1742–1752.CrossRefGoogle Scholar
  103. Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.CrossRefGoogle Scholar
  104. Trenberth, K. E., and L. Smith, 2008: Atmospheric energy budgets in the Japanese Reanalysis: Evaluation and variability. J. Meteor. Soc. Japan, 86, 579–592.CrossRefGoogle Scholar
  105. von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664–3673.CrossRefGoogle Scholar
  106. Wang, X., Z. Zhong, Y. Hu, and H. Yuan, 2010: Effect of lateral boundary scheme on the simulation of tropical cyclone track in regional climate model RegCM3. Asia-Pac. J. Atmos. Sci., 46, 221–230, doi:10.1007/s13143-010-0019-y.CrossRefGoogle Scholar
  107. Wang Y., L. R. Leung, J. L. McGregor, D.-K. Lee, W.-C. Wang, Y.-H. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges, and prospects. J. Meteor. Soc. Japan, 82, 1599–1628.CrossRefGoogle Scholar
  108. Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.CrossRefGoogle Scholar
  109. Yang, Z., and R.W. Arritt, 2002: Tests of a perturbed physics ensemble approach for regional climate modeling. J. Climate, 15, 2881–2896.CrossRefGoogle Scholar
  110. Yhang, Y.-B., and S.-Y. Hong, 2011: A study on large-scale nudging effects in regional climate model simulation. Asia-Pac. J. Atmos. Sci., 47, 235–243.CrossRefGoogle Scholar
  111. Yoon, J.-H., L. R. Leung, and J. Correia Jr., 2012: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. J. Geophys. Res., 117, D21109, doi:10.1029/2012JD017650.Google Scholar
  112. Yoshimura, K., and M. Kanamitsu, 2008: Dynamical global downscaling of global reanalysis.Mon. Wea. Rev., 136, 2983–2998.CrossRefGoogle Scholar
  113. —, and —, 2013: Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon. Wea. Rev., 141, 3087–3101, doi:10.1175/MWR-D-12-00271.1.CrossRefGoogle Scholar
  114. Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simu-lations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos.-Ocean, 33, 407–446.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulKorea
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations