Skip to main content
Log in

A theory for polar amplification from a general circulation perspective

  • Review
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Records of the past climates show a wide range of values of the equator-to-pole temperature gradient, with an apparent universal relationship between the temperature gradient and the globalmean temperature: relative to a reference climate, if the global-mean temperature is higher (lower), the greatest warming (cooling) occurs at the polar regions. This phenomenon is known as polar amplification. Understanding this equator-to-pole temperature gradient is fundamental to climate and general circulation, yet there is no established theory from a perspective of the general circulation. Here, a general circulation-based theory for polar amplification is presented. Recognizing the fact that most of the available potential energy (APE) in the atmosphere is untapped, this theory invokes that La-Niña-like tropical heating can help tap APE and warm the Arctic by exciting poleward and upward propagating Rossby waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot, D. S., and E. Tziperman, 2008a: A high-latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165–185.

    Article  Google Scholar 

  • —, and —, 2008b: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, doi:10.1029/2007 GL032286.

    Article  Google Scholar 

  • —, C.C. Walker, and E. Tziperman, 2009: Can a convective cloud feedback help to eliminate winter and spring sea ice at high CO2 concentrations? J. Climate, 22, 5719–5731.

    Google Scholar 

  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dynam., 24, 655–666.

    Article  Google Scholar 

  • Bannon, P. R., 2012: Atmospheric available energy. J. Atmos. Sci., 69, 3745–3762.

    Article  Google Scholar 

  • Barron, E. J., W. H. Peterson, D. Pollard, and S. L. Thompson, 1993: Past climate and the role of ocean heat transport: model simulations for the Cretaceous. Paleoceanography, 8, 785–798.

    Article  Google Scholar 

  • Bekryaev, Roman V., Igor V. Polyakov, and Vladimir A. Alexeev, 2010: Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming. J. Climate, 23, 3888–3906.

    Article  Google Scholar 

  • Bralower, T. J., D. J. Thomas, J. C. Zachos, M. M. Hirschmann, U. Rohl, H. Sigudsson, H. E. Thomas, and D. L. Whitney, 1997: High-resolution records of late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology, 25, 963–966.

    Article  Google Scholar 

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611–619.

    Article  Google Scholar 

  • —, and Y. A. Izrael, 1991: In Anthropogenic Climate Change, ed. M. I. Budyko, Y. A. Izrael, pp. 277–318. Tucson: Uni. Ariz. Press.

  • Caballero, R., and M. Huber, 2010: spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, doi:10.1029/2010GL043468.

    Google Scholar 

  • Charney, J. G., and P. G. Drazin, 1961: propgation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109.

    Article  Google Scholar 

  • —, and M. E. Stern, 1962: On the instability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159–172.

    Article  Google Scholar 

  • Chiang, John C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18(4), doi:10.1029/2003PA 000916.

  • Cehelsky, P., and K. K. Tung, 1987: Theories of multiple equilibria and weather regimes-A critical reexamination. Part II: Baroclinic two-layer models. J. Atmos. Sci., 44, 3282–3303.

    Google Scholar 

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196.

    Article  Google Scholar 

  • DeConto, R. M., E. C. Brady, J. C. Bergengren, and W. W. Hay, 2000: Late Cretaceous climate, vegetation and ocean interactions in Warm Climates in Earth History, B. R. Huber, K. G. MacLeod, S. L. Wing, Eds., Cambrige Univ. Press, pp. 275–296.

  • Douglas, R. G., and S. M. Savin, 1978: Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Mar. Micropaleontol., 3, 175–196.

    Article  Google Scholar 

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 4342–4362.

    Article  Google Scholar 

  • Farrell, B. F., 1990: Equable climate dynamics. J. Atmos. Sci., 47, 2986–2995.

    Article  Google Scholar 

  • Flourney, M., S. B. Feldstein, S. Lee, and E. Clothiaux 2014: On the linkage between station downward infrared radiation data, teleconnections, and tropical convection. In preparation.

    Google Scholar 

  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropical precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282–3299.

    Article  Google Scholar 

  • —, S. B. Feldstein, D. W. Waugh, C. Yoo, and S. Lee, 2012: Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophys. Res. Lett., 39, http://dx.doi.org/10.1029/2012GL053144.

  • Graversen, R. G., 2006: Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? J. Climate, 19, 5422–5438.

    Article  Google Scholar 

  • —, and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Clim. Dynam., 33, 629–643, doi:10.1007/s00382-009-0535-6.

    Article  Google Scholar 

  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity. Geoph. Monog. series, 29, Amer. Geophys. Union, 130–163 pp.

    Article  Google Scholar 

  • Held, I. M., and V. D. Larichev, 1996: Scaling theory for horizontally homogeneous, baro- clinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 945–952.

    Article  Google Scholar 

  • —, and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 5686–5699.

    Google Scholar 

  • Hoffert, M. I., and C. Covey, 1992: Deriving global climate sensitivity from palaeoclimate reconstructions. Nature, 360, 573–576.

    Article  Google Scholar 

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    Article  Google Scholar 

  • Hoskins, B. J., and D. Karoly, 1981: the steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 179–1196.

    Google Scholar 

  • Huber, B., K. G. MacLeod, and S. L. Wing, 2000: Warm Climates in Earth History. Cambridge Press, 462 pp.

    Google Scholar 

  • Huber, M. 2008: A hotter greenhouse? Science, 321, 353–354.

    Article  Google Scholar 

  • Huang, H.-P., K. M. Weickmann, and C. J. Hsu, 2001: Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Climate, 14, 1525–1534.

    Article  Google Scholar 

  • Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmo- spheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, doi:10.1029/2010GL045440.

    Google Scholar 

  • Johanneseen, O. M., and Coauthors, 2004: Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus, 56A, 328–341.

    Article  Google Scholar 

  • Kim, H. K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 2859–2871.

    Article  Google Scholar 

  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cycloneinduced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638–654.

    Article  Google Scholar 

  • Koutavas, A., J. Lynch-Stieglitz, T. M. Marchitto Jr., and J. P. Sachs, 2002: El Niño-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature. Science, 297, 226–230, doi: 10.1126/science.1072376.

    Article  Google Scholar 

  • Kump, L. R., and D. Pollard, 2008: Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320, 195.

    Article  Google Scholar 

  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nature Climate Change, 3, 571–576, doi:10.1038/NCLIMATE1840.

    Google Scholar 

  • Lea, D. W., D. K. Pak, and H. J. Spero, 2000: Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science, 289, 1719. doi: 10.1126/science.289.5485.1719

    Article  Google Scholar 

  • Lee, S., 1999: Why are the climatological zonal mean winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 1353–1363.

    Article  Google Scholar 

  • —, S. Feldstein, D. Pollard, and T. White, 2011a: Can planetary wave dynamics explain equable climates? J. Climate, 24, 2391–2404.

    Article  Google Scholar 

  • —, T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011b: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 4350–4367.

  • —, 2012: Testing of the Tropically Excited Arctic Warming Mechanism (TEAM) with traditional El Niño and La Niña. J. Climate, 25, 4015–4022, doi: 10.1175/jcli-d-12-00055.1.

  • Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813.

    Google Scholar 

  • Lindzen, R. S., and B. Farrell, 1980: The role of polar regions in global climate, and the parameterization of global heat transport. Mon. Weather Rev., 108, 2064–79.

    Article  Google Scholar 

  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. PNAS, 109, 4074–4079, doi: 10.1073/pnas.1114910109.

    Article  Google Scholar 

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.

    Article  Google Scholar 

  • Lu, J., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circu- lation model. Clim. Dynam., 34, 669–687.

    Article  Google Scholar 

  • Madden R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • —, and —, 1972: Description of global scale circulation cells in the Tropics with 40-50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1975: The effect of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 3–15.

    Article  Google Scholar 

  • —, and R. J. Stouffer, 1980: Sensitivity of global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 5529–5554.

    Article  Google Scholar 

  • Masson-Delmotte, and Coauthors, 2006: Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dynam., 26, 513–529.

    Article  Google Scholar 

  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian Oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 1991–2011, doi: 10.1256/qj.02.123.

    Article  Google Scholar 

  • McKenna, M., 1980: Eocene paleolatitude, climate, and mammals of Ellesmere Island. Palaeogeogr. Palaeocl., 30, 349–362.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Miller, G. H., R. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. C. Serreze, and J. W. C. White, 2010: Arctic amplication: can the past constrain the future? Quat. Sci. Rev., 29, 1779–1790, doi:10.1016/ j.quascirev.2010.02.008

    Article  Google Scholar 

  • Otto-Bliesner, B. L., and G. R. Upchurch, 1997: Vegetation-induced warming of high-latitude regions during the late Cretaceous period. Nature, 385, 804–807.

    Article  Google Scholar 

  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes associated with the recent loss of Arctic sea ice. Tellus, 62A, 1–9.

    Article  Google Scholar 

  • Park, H.-S., S. Lee, S.-W. Son, Y. Kosaka, and S. B. Feldstein 2014: Rapid increase in Arctic winter downward longwave radiation and sea ice melting. In preparation.

    Google Scholar 

  • Pearson, P. N., P. W. Ditchfield, J. Singano, K. G. Harcourt-Brown, C. J. Nicholas, R. K. Olsson, N. J. Shackleton, and M. A. Hall, 2001: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413, 481–487.

    Article  Google Scholar 

  • Pedlosky, J., 1964: The stability of currents in the atmosphere and ocean. Part I. J. Atmos. Sci., 21, 201–219.

    Article  Google Scholar 

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

    Google Scholar 

  • Persson, P. O., 2012: Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Clim. Dynam., 39, 1349–1371. doi:10.1007/s00382-011-1196-9

    Article  Google Scholar 

  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    Article  Google Scholar 

  • Pfeffer, R. L., 1981: Wave-mean flow interactions in the atmosphere. J. Atmos. Sci., 38, 1340–1359.

    Article  Google Scholar 

  • Rickaby, R. E. M., and P. Halloran, 2005: Cool La Niña during the warmth of the Pliocene? Science, 307(5717), 1948–1952. doi: 10.1126/science.1104666.

    Article  Google Scholar 

  • Rigor, I. G., R. L. Colony, and S. Martin, 2000: Variations in surface air temperature observations in the Arctic, 1979-97. J. Climate, 13, 896–914.

    Article  Google Scholar 

  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astro. Fluid, 15, 167–211.

    Article  Google Scholar 

  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 1211–1227.

    Article  Google Scholar 

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence. J. Atmos. Sci., 45, 1228–1251.

    Article  Google Scholar 

  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Quat. Sci. Rev., 77, 85–96, doi: 10.1016/j.gloplacha.2011.03.004

    Google Scholar 

  • Sewall, J. O., and L. C. Sloan, 2004: Arctic Ocean and reduced obliquity on early Paleogene climate. Geology, 32, 477–480.

    Article  Google Scholar 

  • Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125.

    Article  Google Scholar 

  • Sloan, L. C., J. C. G. Walker, and T. C. Moore, 1995: The role of oceanic heat transport in early Eocene climate. Paleoceanography, 10, 347–356.

    Article  Google Scholar 

  • Sohn, B. J., and S.-C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112.

    Article  Google Scholar 

  • Spicer, R. A., A. Ahlberg, A. B. Herman, C.-C. Hofmann, M. Raikevich, P. J. Valdes, and P. J. Markwick, 2008: The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth Plan. Sci. Lett., 267, 228–235.

    Article  Google Scholar 

  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580.

    Article  Google Scholar 

  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 1053; doi: 10.1126/science.1237554.

    Article  Google Scholar 

  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci. 35, 561–71.

    Article  Google Scholar 

  • Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2002: Super ENSO and global climate oscillations at millennial time scales. Science, 297, 222, doi: 10.1126/science.1071627.

    Article  Google Scholar 

  • Stroeve, J., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110, 1005–1027, doi:10.1007/s10584-011-0101-1

    Article  Google Scholar 

  • Tarduno, J. A., D. B. Brinkman, P. R. Renne, R. D. Cottrell, H. Scher, and P. Castillo, 1998: Evidence for extreme climatic warmth from late Cretaceous Arctic vertebrates. Science, 282, 2241–2244.

    Article  Google Scholar 

  • Vallis, G. K., 1988: Numerical studies of eddy transport properties in eddyresolving and parameterized models. Quart. J. Roy. Meteor. Soc., 114, 183–204.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340.

    Article  Google Scholar 

  • Visser, K., R. Thunell, and L. Stott, 2003: Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 421, 152–155.

    Article  Google Scholar 

  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3350.

    Article  Google Scholar 

  • Walsh, J. E., W. L. Chapman, V. E. Romanovsky, J. H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21, 6156–6174.

    Article  Google Scholar 

  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part II: recent trends. J. Climate, 18, 2575–2593.

    Google Scholar 

  • Winton, M., 2006: Amplified Arctic climate change: what does surface albedo feedback have to do with it. Geophys. Res. Lett., 33, doi: 10.1029/2005GL025244.

  • Wu, Y., M. Ting, R. Seager, H.-P. Huang, and M. Cane, 2010: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Clim. Dynam., 37, 53–72, doi:10.1007/s00382-010-0776-4.

    Google Scholar 

  • Yoo, C., S. Feldstein, and S. Lee, 2011: The impact of the Madden-Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979-2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    Article  Google Scholar 

  • —, S. Lee, and S. B. Feldstein, 2012a: Mechanisms of extratropical surface air temperature change in response to the Madden-Julian oscillation. J. Climate, 25, 5777–5790, doi: 10.1175/jcli- d-11-00566.1.

    Article  Google Scholar 

  • —, —, and —, 2012b: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 2379–2393, DOI: 10.1175/JAS-D-11-0261.1.

  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608–624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukyoung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S. A theory for polar amplification from a general circulation perspective. Asia-Pacific J Atmos Sci 50, 31–43 (2014). https://doi.org/10.1007/s13143-014-0024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0024-7

Keywords

Navigation