Skip to main content

Validation of the experimental hindcasts produced by the GloSea4 seasonal prediction system

Abstract

Using 14 year (1996–2009) ensemble hindcast runs produced with the Global Seasonal Forecasting System version 4 (GloSea4), this study evaluates the spatial and temporal structure of the hindcast climatology and the prediction skill of major climate variability. A special focus is on the fidelity of the system to reproduce and to forecast phenomena that are closely related to the East Asian climate. Overall the GloSea4 system exhibits realistic representations of the basic climate even though a few model deficiencies are identified in the sea surface temperature and precipitation. In particular, the capability of GloSea4 to capture the seasonal migration of rain belt associated with Changma implies a good potential for the Asian summer monsoon prediction. It is found that GloSea4 is as skillful as other state-of-the-art seasonal prediction systems in forecasting climate variability including the El-Nino/southern oscillation (ENSO), the East Asian summer monsoon, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO). The results presented in this study will provide benchmark evaluation for next seasonal prediction systems to be developed at the Korea Meteorological Administration.

This is a preview of subscription content, access via your institution.

References

  1. Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeor., 4, 1147–1167.

    Article  Google Scholar 

  2. Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 1891–1910.

    Article  Google Scholar 

  3. Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337–1351. doi: 10.1002/qj.289.

    Article  Google Scholar 

  4. Bosilovich M. G., 2008: NASA’s modern era retrospective-analysis for research and applications: Integrating earth observations. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

    Google Scholar 

  5. Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887–2908.

    Article  Google Scholar 

  6. Byun, Y.-H., and S.-Y. Hong, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and its impact on seasonal prediction. Mon. Wea. Rev., 135, 2135–2154.

    Article  Google Scholar 

  7. Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Clim. Dynam., 18, 403–420.

    Article  Google Scholar 

  8. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759–1782.

    Article  Google Scholar 

  9. Dee, D. P., and Coauthors. 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137: 553–597.

    Article  Google Scholar 

  10. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.

    Article  Google Scholar 

  11. ____, 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152.

    Article  Google Scholar 

  12. Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530–543.

    Article  Google Scholar 

  13. Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropicalextratropical interaction associated with the 30-60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177–2199.

    Article  Google Scholar 

  14. Graeme, L. S., and Coauthors. 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi: 10.1029/2008JD009982.

    Google Scholar 

  15. Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden-Julian Oscillation forecasts: A CLIVAR MJO Working Group Project. Bull. Amer. Meteor. Soc., 91, 1247–1258.

    Article  Google Scholar 

  16. Gregory, D., J.-J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126, 1685–1710. doi: 10.1002/qj.49712656607.

    Article  Google Scholar 

  17. Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden-Julian Oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 4130–4149.

    Article  Google Scholar 

  18. Ham, S., and S.-Y. Hong, 2013: Sensitivity of simulated intraseasonal oscillation to four convective parameterization schemes in a coupled climate model. Asia-Pac. J. Atmos. Sci., 49, 483–496.

    Article  Google Scholar 

  19. Ham, Y.-G., and M. M. Rienecker, 2012: Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction. Clim. Dynam., 39, 1727–1738.

    Article  Google Scholar 

  20. Hastings, D. A., and W. J. Emery, 1992: The advanced very high resolution radiometer (AVHRR) — A brief reference guide. Photogramm. Eng. Remote Sens., 58, 1183–1188.

    Google Scholar 

  21. Hendon, H. H., E. Lim, G. Wang, O. Alves, and D. Hudson, 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713, doi:10.1029/2009GL040100.

    Article  Google Scholar 

  22. Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: the next generation Met Office climate modelling system. Geosci. Model Dev., 4, 223–253.

    Article  Google Scholar 

  23. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

    Article  Google Scholar 

  24. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user’s manual, version 4.1. LA-CC-06-012, Los Alamos National Laboratory, 76 pp.

    Google Scholar 

  25. Hwang, Y.-T., and D. M. W. Frierson. 2013: Link between the doubleintertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci., 110, 4935–4940.

    Article  Google Scholar 

  26. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dynam., 31, 647–664.

    Article  Google Scholar 

  27. ____, and J. L. Kinter, III, 2009: Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim. Dynam., 32, 675–691.

    Article  Google Scholar 

  28. Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173–199.

    Article  Google Scholar 

  29. Kang, H. S., K. O. Boo, and C. Cho, 2011: Introduction to the KMA-Met Office joint seasonal forecasting system and evaluation of its hindcast ensemble simulations. 36th NOAA Annual Climate Diagonostics and Prediction Workshop, Fort Worth, TX, 3-6. [Available online at http://www.nws.noaa.gov/ost/climate/STIP/36CDPW/36cdpw-hkang.pdf.]

    Google Scholar 

  30. Kim, H. M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 77–80.

    Article  Google Scholar 

  31. ____, P. J. Webster and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim. Dynam., 39, 2957–2973.

    Article  Google Scholar 

  32. Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    Article  Google Scholar 

  33. Kug, J.-S., Y.-G. Ham, M. Kimoto, F.-F. Jin, and I.-S. Kang, 2010: New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Clim. Dynam., 35, 331–340, doi:10.1007/s00382-009-0664-y.

    Article  Google Scholar 

  34. Kusunoki, S., M. Sugi, A. Kitoh, C. Kobayashi, K. Takano, 2001: Atmospheric seasonal predictability experiments by the JMA AGCM. J. Meteor. Soc. Japan, 79, 1183–1206.

    Article  Google Scholar 

  35. Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Clim. Dynam., 18, 255–276.

    Article  Google Scholar 

  36. Lee, M.-I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 1862–1881.

    Article  Google Scholar 

  37. Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    Article  Google Scholar 

  38. Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525.

    Article  Google Scholar 

  39. Madec, G., 2008: NEMO ocean engine, Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), Tech. Note 27, 219 pp.

  40. Maidens, A., A. A. Scaife, A. Arribas, J. Knight, C. MacLachlan, D. Peterson, M. Gordon, 2013: GloSea5: The new met office high resolution seasonal prediction system. EGU general assembly 2013, 7–12 April, 2013 in Vienna, Austria, id. EGU2013-7649.

    Google Scholar 

  41. Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.

    Article  Google Scholar 

  42. Misra, V., L. Marx, M. Brunke, and X. Zeng, 2008: The equatorial Pacific cold tongue bias in a coupled climate model. J. Climate, 21, 5852–5869.

    Article  Google Scholar 

  43. Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119. doi: 10.1002/qj.49712252905.

    Article  Google Scholar 

  44. Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Clim. Dynam., 37, 1133–1149.

    Article  Google Scholar 

  45. Park, S., S.-Y. Hong, and Y.-H. Byun, 2010: Precipitation in boreal summer simulated by a GCM with two convective parameterization schemes: Implications of the intraseasonal oscillation for dynamic seasonal prediction. J. Climate, 23, 2801–2816.

    Article  Google Scholar 

  46. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  47. Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517. doi: http://dx.doi.org/10.1175/JCLI3812.1

    Article  Google Scholar 

  48. ____, 2013: The NCEP climate forecast system version 2. J. Climate, doi: abs/10.1175/JCLI-D-12-00823.1.

    Google Scholar 

  49. Schemm, J. E., K. C. Mo, and L. Long. 2011: Prediction of tropical storm season activities with the NCEP T382 CFS CGCM. AGU Fall Meeting 2011, abstract #GC23D-02.

    Google Scholar 

  50. Schneider, E. K., 2002: Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15, 449–469.

    Article  Google Scholar 

  51. Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 3079–3102.

    Article  Google Scholar 

  52. Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979-91 and comparisons to other climatologies. J. Climate, 6, 1301–1326.

    Article  Google Scholar 

  53. Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190–1206.

    Article  Google Scholar 

  54. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.

    Article  Google Scholar 

  55. Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño /Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985–2004.

    Google Scholar 

  56. Valcke, S., 2006: OASIS3 user guide (prism_2-5) CERFACS technical support, TR/CMGC/06/73, PRISM report No 3, Toulouse, France, 60 pp.

    Google Scholar 

  57. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

    Article  Google Scholar 

  58. ____, and Coauthors, 2009: Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim. Dynam., 33, 93–117.

    Article  Google Scholar 

  59. Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system, Meteor. Atmos. Phys., 56, 33–55.

    Article  Google Scholar 

  60. ____, and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–925.

    Article  Google Scholar 

  61. Wheeler M. C., and Hendon, H. H., 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.

    Article  Google Scholar 

  62. Wielicki, Bruce A., Bruce R. Barkstrom, Edwin F. Harrison, Robert B. Lee, G. Louis Smith, John E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868.

    Article  Google Scholar 

  63. Yu, J.-Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12, 3305–3318.

    Article  Google Scholar 

  64. Zhang, G. J., and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33.L06709, doi: 10.1029/2005GL025229.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myong-In Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, MI., Kang, HS., Kim, D. et al. Validation of the experimental hindcasts produced by the GloSea4 seasonal prediction system. Asia-Pacific J Atmos Sci 50, 307–326 (2014). https://doi.org/10.1007/s13143-014-0019-4

Download citation

Key words

  • Seasonal prediction
  • GloSea4
  • ENSO
  • MJO
  • Asian monsoon
  • AO