Advertisement

Validation of the experimental hindcasts produced by the GloSea4 seasonal prediction system

  • Myong-In LeeEmail author
  • Hyun-Suk Kang
  • Daehyun Kim
  • Dongmin Kim
  • Hyerim Kim
  • Daehyun Kang
Article

Abstract

Using 14 year (1996–2009) ensemble hindcast runs produced with the Global Seasonal Forecasting System version 4 (GloSea4), this study evaluates the spatial and temporal structure of the hindcast climatology and the prediction skill of major climate variability. A special focus is on the fidelity of the system to reproduce and to forecast phenomena that are closely related to the East Asian climate. Overall the GloSea4 system exhibits realistic representations of the basic climate even though a few model deficiencies are identified in the sea surface temperature and precipitation. In particular, the capability of GloSea4 to capture the seasonal migration of rain belt associated with Changma implies a good potential for the Asian summer monsoon prediction. It is found that GloSea4 is as skillful as other state-of-the-art seasonal prediction systems in forecasting climate variability including the El-Nino/southern oscillation (ENSO), the East Asian summer monsoon, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO). The results presented in this study will provide benchmark evaluation for next seasonal prediction systems to be developed at the Korea Meteorological Administration.

Key words

Seasonal prediction GloSea4 ENSO MJO Asian monsoon AO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeor., 4, 1147–1167.CrossRefGoogle Scholar
  2. Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 1891–1910.CrossRefGoogle Scholar
  3. Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337–1351. doi: 10.1002/qj.289.CrossRefGoogle Scholar
  4. Bosilovich M. G., 2008: NASA’s modern era retrospective-analysis for research and applications: Integrating earth observations. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]Google Scholar
  5. Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887–2908.CrossRefGoogle Scholar
  6. Byun, Y.-H., and S.-Y. Hong, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and its impact on seasonal prediction. Mon. Wea. Rev., 135, 2135–2154.CrossRefGoogle Scholar
  7. Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Clim. Dynam., 18, 403–420.CrossRefGoogle Scholar
  8. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759–1782.CrossRefGoogle Scholar
  9. Dee, D. P., and Coauthors. 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137: 553–597.CrossRefGoogle Scholar
  10. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.CrossRefGoogle Scholar
  11. ____, 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152.CrossRefGoogle Scholar
  12. Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530–543.CrossRefGoogle Scholar
  13. Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropicalextratropical interaction associated with the 30-60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177–2199.CrossRefGoogle Scholar
  14. Graeme, L. S., and Coauthors. 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi: 10.1029/2008JD009982.Google Scholar
  15. Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden-Julian Oscillation forecasts: A CLIVAR MJO Working Group Project. Bull. Amer. Meteor. Soc., 91, 1247–1258.CrossRefGoogle Scholar
  16. Gregory, D., J.-J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quart. J. Roy. Meteor. Soc., 126, 1685–1710. doi: 10.1002/qj.49712656607.CrossRefGoogle Scholar
  17. Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden-Julian Oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 4130–4149.CrossRefGoogle Scholar
  18. Ham, S., and S.-Y. Hong, 2013: Sensitivity of simulated intraseasonal oscillation to four convective parameterization schemes in a coupled climate model. Asia-Pac. J. Atmos. Sci., 49, 483–496.CrossRefGoogle Scholar
  19. Ham, Y.-G., and M. M. Rienecker, 2012: Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction. Clim. Dynam., 39, 1727–1738.CrossRefGoogle Scholar
  20. Hastings, D. A., and W. J. Emery, 1992: The advanced very high resolution radiometer (AVHRR) — A brief reference guide. Photogramm. Eng. Remote Sens., 58, 1183–1188.Google Scholar
  21. Hendon, H. H., E. Lim, G. Wang, O. Alves, and D. Hudson, 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713, doi:10.1029/2009GL040100.CrossRefGoogle Scholar
  22. Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: the next generation Met Office climate modelling system. Geosci. Model Dev., 4, 223–253.CrossRefGoogle Scholar
  23. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.CrossRefGoogle Scholar
  24. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user’s manual, version 4.1. LA-CC-06-012, Los Alamos National Laboratory, 76 pp.Google Scholar
  25. Hwang, Y.-T., and D. M. W. Frierson. 2013: Link between the doubleintertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci., 110, 4935–4940.CrossRefGoogle Scholar
  26. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dynam., 31, 647–664.CrossRefGoogle Scholar
  27. ____, and J. L. Kinter, III, 2009: Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim. Dynam., 32, 675–691.CrossRefGoogle Scholar
  28. Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173–199.CrossRefGoogle Scholar
  29. Kang, H. S., K. O. Boo, and C. Cho, 2011: Introduction to the KMA-Met Office joint seasonal forecasting system and evaluation of its hindcast ensemble simulations. 36th NOAA Annual Climate Diagonostics and Prediction Workshop, Fort Worth, TX, 3-6. [Available online at http://www.nws.noaa.gov/ost/climate/STIP/36CDPW/36cdpw-hkang.pdf.]Google Scholar
  30. Kim, H. M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 77–80.CrossRefGoogle Scholar
  31. ____, P. J. Webster and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim. Dynam., 39, 2957–2973.CrossRefGoogle Scholar
  32. Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.CrossRefGoogle Scholar
  33. Kug, J.-S., Y.-G. Ham, M. Kimoto, F.-F. Jin, and I.-S. Kang, 2010: New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Clim. Dynam., 35, 331–340, doi:10.1007/s00382-009-0664-y.CrossRefGoogle Scholar
  34. Kusunoki, S., M. Sugi, A. Kitoh, C. Kobayashi, K. Takano, 2001: Atmospheric seasonal predictability experiments by the JMA AGCM. J. Meteor. Soc. Japan, 79, 1183–1206.CrossRefGoogle Scholar
  35. Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Clim. Dynam., 18, 255–276.CrossRefGoogle Scholar
  36. Lee, M.-I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 1862–1881.CrossRefGoogle Scholar
  37. Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.CrossRefGoogle Scholar
  38. Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525.CrossRefGoogle Scholar
  39. Madec, G., 2008: NEMO ocean engine, Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), Tech. Note 27, 219 pp.Google Scholar
  40. Maidens, A., A. A. Scaife, A. Arribas, J. Knight, C. MacLachlan, D. Peterson, M. Gordon, 2013: GloSea5: The new met office high resolution seasonal prediction system. EGU general assembly 2013, 7–12 April, 2013 in Vienna, Austria, id. EGU2013-7649.Google Scholar
  41. Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.CrossRefGoogle Scholar
  42. Misra, V., L. Marx, M. Brunke, and X. Zeng, 2008: The equatorial Pacific cold tongue bias in a coupled climate model. J. Climate, 21, 5852–5869.CrossRefGoogle Scholar
  43. Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119. doi: 10.1002/qj.49712252905.CrossRefGoogle Scholar
  44. Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Clim. Dynam., 37, 1133–1149.CrossRefGoogle Scholar
  45. Park, S., S.-Y. Hong, and Y.-H. Byun, 2010: Precipitation in boreal summer simulated by a GCM with two convective parameterization schemes: Implications of the intraseasonal oscillation for dynamic seasonal prediction. J. Climate, 23, 2801–2816.CrossRefGoogle Scholar
  46. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  47. Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517. doi: http://dx.doi.org/10.1175/JCLI3812.1 CrossRefGoogle Scholar
  48. ____, 2013: The NCEP climate forecast system version 2. J. Climate, doi: abs/10.1175/JCLI-D-12-00823.1.Google Scholar
  49. Schemm, J. E., K. C. Mo, and L. Long. 2011: Prediction of tropical storm season activities with the NCEP T382 CFS CGCM. AGU Fall Meeting 2011, abstract #GC23D-02.Google Scholar
  50. Schneider, E. K., 2002: Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15, 449–469.CrossRefGoogle Scholar
  51. Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 3079–3102.CrossRefGoogle Scholar
  52. Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979-91 and comparisons to other climatologies. J. Climate, 6, 1301–1326.CrossRefGoogle Scholar
  53. Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190–1206.CrossRefGoogle Scholar
  54. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.CrossRefGoogle Scholar
  55. Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño /Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985–2004.Google Scholar
  56. Valcke, S., 2006: OASIS3 user guide (prism_2-5) CERFACS technical support, TR/CMGC/06/73, PRISM report No 3, Toulouse, France, 60 pp.Google Scholar
  57. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.CrossRefGoogle Scholar
  58. ____, and Coauthors, 2009: Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim. Dynam., 33, 93–117.CrossRefGoogle Scholar
  59. Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system, Meteor. Atmos. Phys., 56, 33–55.CrossRefGoogle Scholar
  60. ____, and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–925.CrossRefGoogle Scholar
  61. Wheeler M. C., and Hendon, H. H., 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  62. Wielicki, Bruce A., Bruce R. Barkstrom, Edwin F. Harrison, Robert B. Lee, G. Louis Smith, John E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868.CrossRefGoogle Scholar
  63. Yu, J.-Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J. Climate, 12, 3305–3318.CrossRefGoogle Scholar
  64. Zhang, G. J., and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33.L06709, doi: 10.1029/2005GL025229.Google Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Myong-In Lee
    • 1
    • 4
    Email author
  • Hyun-Suk Kang
    • 2
  • Daehyun Kim
    • 3
  • Dongmin Kim
    • 1
  • Hyerim Kim
    • 1
  • Daehyun Kang
    • 1
  1. 1.School of Urban and Environmental EngineeringUNISTUlsanKorea
  2. 2.Climate Research DivisionNational Institute of Meteorological ResearchJejuKorea
  3. 3.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  4. 4.School of Urban and Environmental EngineeringUlsan National Institute of Science and TechnologyUlsanKorea

Personalised recommendations