Abstract
Global average ocean temperature variations to 2,000 m depth during 1955–2011 are simulated with a 40 layer 1D forcing-feedback-mixing model for three forcing cases. The first case uses standard anthropogenic and volcanic external radiative forcings. The second adds non-radiative internal forcing (ocean mixing changes initiated in the top 200 m) proportional to the Multivariate ENSO Index (MEI) to represent an internal mode of natural variability. The third case further adds ENSO-related radiative forcing proportional to MEI as a possible natural cloud forcing mechanism associated with atmospheric circulation changes. The model adjustable parameters are net radiative feedback, effective diffusivities, and internal radiative (e.g., cloud) and non-radiative (ocean mixing) forcing coefficients at adjustable time lags. Model output is compared to Levitus ocean temperature changes in 50 m layers during 1955–2011 to 700 m depth, and to lag regression coefficients between satellite radiative flux variations and sea surface temperature between 2000 and 2010. A net feedback parameter of 1.7Wm−2 K−1 with only anthropogenic and volcanic forcings increases to 2.8Wm−2 K−1 when all ENSO forcings (which are one-third radiative) are included, along with better agreement between model and observations. The results suggest ENSO can influence multi-decadal temperature trends, and that internal radiative forcing of the climate system affects the diagnosis of feedbacks. Also, the relatively small differences in model ocean warming associated with the three cases suggests that the observed levels of ocean warming since the 1950s is not a very strong constraint on our estimates of climate sensitivity.
This is a preview of subscription content, access via your institution.
References
Dessler, A. E., 2011: Cloud variations and the Earth’s energy budget. Geophys. Res. Lett., 38, L19701, doi:10.1029/2011GL049236.
Forster, P. M., and J. M. Gregory, 2006: The climate sensitivity and its components diagnosed from Earth Radiation Budget data. J. Climate, 19, 39–52.
____, and K. E. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19, 6181–6194.
Gupta, Alexander Sen, Les C. Muir, Jaclyn N. Brown, Steven J. Phipps, Paul J. Durack, Didier Monselesan, and Susan E. Wijffels, 2012: Climate drift in the CMIP3 models. J. Climate, 25, 4621–4640.
Harvey, L. D., and Z. Huang, 2001: A quasi-one-dimensional coupled climate-change cycle model 1. Description and behavior of the climate component. J. Geophys. Res., 106, 22,339–22,353, doi:10.1029/2000-JC000364.
Intergovernmental Panel on Climate Change (IPCC), 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York, 996 pp.
Jin, F.-F., S. I. An, A. Timmermann, and J. Zhao, 2003: Strong El Nino events and nonlinear dynamical heating. Geophys. Res. Lett., 30(3), 1120, doi:10:1029/2002GL016356.
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation Problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.
____, and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0-2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.
Lindzen, R. S., 2002: Do deep ocean temperature records verify models? Geophys. Res. Lett., 29, 10.1029/2001GL014360.
____, and Y.-S. Choi, 2011: On the observational determination of climate sensitivity and its implications. Asia-Pacific J. Atmos. Sci., 47(4), 377–390, doi:10.1007/s13143-011-0023-x.
Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multiÅ]model data set: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.
Meinshausen, M., and Coauthors, 2011: The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300. Climatic Change, doi:10.1007/s10584-011-0156-z.
Rasmussen, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.
Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J. Climate, 19, 446–469.
Solomon, A., and M. Newman, 2012: Reconciling disparate 20th century Indo-Pacific ocean temperature trends in the instrumental record. Nature Climate Change, 2, 691–699, doi:10.1038/nclimate1591.
Spencer, R. W., and W. D. Braswell, 2010: On the diagnosis of radiative feedback in the presence of unknown radiative forcing. J. Geophys. Res., 115, doi:10.1029/2009JD013371.
____, and _____, 2011: On the misdiagnosis of surface temperature feedbacks from variations in Earth’s radiant energy balance. Remote Sens., 3, 1603–1613, doi:10.3390/rs3081603.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.
Trenberth, K., and T. J. Hoar, 1995: The 1990–1995 El Niño-Southern Oscillation event: Longest on record. Geophys. Res. Lett., 23, 57–60.
Tsonis, A. A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, doi:10.1029/2007GL030288.
Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853–868.
Wolter, K., 1987: The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Climate Appl. Meteor., 26, 540–558.
____, and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 1074–1087, doi:10.1002/joc.2336.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Spencer, R.W., Braswell, W.D. The role of ENSO in global ocean temperature changes during 1955–2011 simulated with a 1D climate model. Asia-Pacific J Atmos Sci 50, 229–237 (2014). https://doi.org/10.1007/s13143-014-0011-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13143-014-0011-z
Key words
- Climate sensitivity
- climate change
- climate modeling
- El Nino Southern Oscillation
- ocean heat content