Asia-Pacific Journal of Atmospheric Sciences

, Volume 50, Issue 2, pp 229–237 | Cite as

The role of ENSO in global ocean temperature changes during 1955–2011 simulated with a 1D climate model

Article

Abstract

Global average ocean temperature variations to 2,000 m depth during 1955–2011 are simulated with a 40 layer 1D forcing-feedback-mixing model for three forcing cases. The first case uses standard anthropogenic and volcanic external radiative forcings. The second adds non-radiative internal forcing (ocean mixing changes initiated in the top 200 m) proportional to the Multivariate ENSO Index (MEI) to represent an internal mode of natural variability. The third case further adds ENSO-related radiative forcing proportional to MEI as a possible natural cloud forcing mechanism associated with atmospheric circulation changes. The model adjustable parameters are net radiative feedback, effective diffusivities, and internal radiative (e.g., cloud) and non-radiative (ocean mixing) forcing coefficients at adjustable time lags. Model output is compared to Levitus ocean temperature changes in 50 m layers during 1955–2011 to 700 m depth, and to lag regression coefficients between satellite radiative flux variations and sea surface temperature between 2000 and 2010. A net feedback parameter of 1.7Wm−2 K−1 with only anthropogenic and volcanic forcings increases to 2.8Wm−2 K−1 when all ENSO forcings (which are one-third radiative) are included, along with better agreement between model and observations. The results suggest ENSO can influence multi-decadal temperature trends, and that internal radiative forcing of the climate system affects the diagnosis of feedbacks. Also, the relatively small differences in model ocean warming associated with the three cases suggests that the observed levels of ocean warming since the 1950s is not a very strong constraint on our estimates of climate sensitivity.

Key words

Climate sensitivity climate change climate modeling El Nino Southern Oscillation ocean heat content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dessler, A. E., 2011: Cloud variations and the Earth’s energy budget. Geophys. Res. Lett., 38, L19701, doi:10.1029/2011GL049236.CrossRefGoogle Scholar
  2. Forster, P. M., and J. M. Gregory, 2006: The climate sensitivity and its components diagnosed from Earth Radiation Budget data. J. Climate, 19, 39–52.CrossRefGoogle Scholar
  3. ____, and K. E. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19, 6181–6194.CrossRefGoogle Scholar
  4. Gupta, Alexander Sen, Les C. Muir, Jaclyn N. Brown, Steven J. Phipps, Paul J. Durack, Didier Monselesan, and Susan E. Wijffels, 2012: Climate drift in the CMIP3 models. J. Climate, 25, 4621–4640.CrossRefGoogle Scholar
  5. Harvey, L. D., and Z. Huang, 2001: A quasi-one-dimensional coupled climate-change cycle model 1. Description and behavior of the climate component. J. Geophys. Res., 106, 22,339–22,353, doi:10.1029/2000-JC000364.CrossRefGoogle Scholar
  6. Intergovernmental Panel on Climate Change (IPCC), 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, New York, 996 pp.Google Scholar
  7. Jin, F.-F., S. I. An, A. Timmermann, and J. Zhao, 2003: Strong El Nino events and nonlinear dynamical heating. Geophys. Res. Lett., 30(3), 1120, doi:10:1029/2002GL016356.CrossRefGoogle Scholar
  8. Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation Problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.Google Scholar
  9. ____, and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0-2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.CrossRefGoogle Scholar
  10. Lindzen, R. S., 2002: Do deep ocean temperature records verify models? Geophys. Res. Lett., 29, 10.1029/2001GL014360.Google Scholar
  11. ____, and Y.-S. Choi, 2011: On the observational determination of climate sensitivity and its implications. Asia-Pacific J. Atmos. Sci., 47(4), 377–390, doi:10.1007/s13143-011-0023-x.CrossRefGoogle Scholar
  12. Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multiÅ]model data set: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.CrossRefGoogle Scholar
  13. Meinshausen, M., and Coauthors, 2011: The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300. Climatic Change, doi:10.1007/s10584-011-0156-z.Google Scholar
  14. Rasmussen, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.CrossRefGoogle Scholar
  15. Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J. Climate, 19, 446–469.CrossRefGoogle Scholar
  16. Solomon, A., and M. Newman, 2012: Reconciling disparate 20th century Indo-Pacific ocean temperature trends in the instrumental record. Nature Climate Change, 2, 691–699, doi:10.1038/nclimate1591.Google Scholar
  17. Spencer, R. W., and W. D. Braswell, 2010: On the diagnosis of radiative feedback in the presence of unknown radiative forcing. J. Geophys. Res., 115, doi:10.1029/2009JD013371.Google Scholar
  18. ____, and _____, 2011: On the misdiagnosis of surface temperature feedbacks from variations in Earth’s radiant energy balance. Remote Sens., 3, 1603–1613, doi:10.3390/rs3081603.CrossRefGoogle Scholar
  19. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.CrossRefGoogle Scholar
  20. Trenberth, K., and T. J. Hoar, 1995: The 1990–1995 El Niño-Southern Oscillation event: Longest on record. Geophys. Res. Lett., 23, 57–60.CrossRefGoogle Scholar
  21. Tsonis, A. A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, doi:10.1029/2007GL030288.CrossRefGoogle Scholar
  22. Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853–868.CrossRefGoogle Scholar
  23. Wolter, K., 1987: The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Climate Appl. Meteor., 26, 540–558.CrossRefGoogle Scholar
  24. ____, and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 1074–1087, doi:10.1002/joc.2336.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Earth System Science CenterUniversity of Alabama in HuntsvilleAlabamaUSA
  2. 2.UAH Earth System Science CenterHuntsvilleUSA

Personalised recommendations