Asia-Pacific Journal of Atmospheric Sciences

, Volume 50, Issue 2, pp 139–151 | Cite as

Simulations of an isolated two-dimensional thunderstorm: Sensitivity to cloud droplet size and the presence of graupel

  • Mary-Jane Morongwa BopapeEmail author
  • Francois Alwyn Engelbrecht
  • David A. Randall
  • Willem Adolf Landman


Cloud Resolving Models (CRMs) which are used increasingly to make operational forecasts, employ Bulk Microphysics Schemes (BMSs) to describe cloud microphysical processes. In this study two BMSs are employed in a new Nonhydrostatic σ-coordinate Model to perform two hour simulations of convection initiated by a warm bubble, using a horizontal grid resolution of 500 m. Different configurations of the two BMSs are applied, to test the effects of the presence of graupel with one scheme (2-configurations) and of changing the cloud droplet sizes in the second scheme (4-configurations), on the simulation of idealised thunderstorms. Maximum updrafts in all the simulations are similar over the first 40 minutes, but start to differ beyond this point. The first scheme simulates the development of a second convective cell that is triggered by the cold pool that develops from the outflow of the first storm. The cold pool is more intense in the simulation with graupel because of melting of graupel particles, which results in relatively large raindrops, decreases the temperature through latent heat absorption, causing stronger downdrafts, which all contribute to the formation of a more intense cold pool. The second scheme simulates the development of a second cell in two of its configurations, while two other configurations do not simulate the redevelopment. Two configurations that simulate the secondary redevelopment produce a slightly stronger cold pool just before redevelopment. Our results show that small differences in the microphysics formulations result in simulations of storm dynamics that diverge, possibly due nonlinearities in the model.

Key words

Atmospheric modelling cloud resolving model microphysics schemes thunderstorm cold pool 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abiodun, B. J., J. M. Prusa, and W. J. Gutowski Jr, 2008: Implementation of a nonhydrostatic, adaptation, adaptive-grid dynamics core in CAM3. Part I: Comparison of dynamics cores in aqua-planet simulations. Climate Dyn. 31, 795–810.CrossRefGoogle Scholar
  2. Arakawa, A, 2004: Review article: The cumulus parameterisation problem: Past, Present and Future. J. Climate, 17, 2493–252.CrossRefGoogle Scholar
  3. Chen, S., and W. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99–118.CrossRefGoogle Scholar
  4. Colle, B. A., and C. F. Mass, 2000: The 5-9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecast. Mon. Wea. Rev., 128, 593–617.CrossRefGoogle Scholar
  5. ćurić, M., D. Jane, and V. Vucković, 2007: Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteor. Atmos. Phys., 95, 179–193.CrossRefGoogle Scholar
  6. Davies. T., A. Staniforth, N. Wood and J. Thuburn, 2003: Validity of anelastic and other equation sets inferred from normal-mode analysis. Quart. J. Roy. Meteor. Soc., 129, 2761–2775.CrossRefGoogle Scholar
  7. ____, M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759–1782.CrossRefGoogle Scholar
  8. Dawson, II D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between singlemoment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152–1171.CrossRefGoogle Scholar
  9. Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, 465 pp.CrossRefGoogle Scholar
  10. Engelbrecht, F. A., 2006: Theory and application of quasi-elastic equations in terrain-following coordinates based on the full pressure field. Doctoral thesis, University of Pretoria, Published online, 208 pp.Google Scholar
  11. ____, J. L. McGregor, and C. J. de W. Rautenbach, 2007: On the development of a new nonhydrostatic atmospheric model in South Africa. S. Afr. J. Sci., 103, 127–134.Google Scholar
  12. Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627.CrossRefGoogle Scholar
  13. Grabowski, W. W., 2000: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Paramaterization (CRCP). J. Atmos. Sci., 58, 978–997.CrossRefGoogle Scholar
  14. Grubišić, V., R. K. Vellore, and A. W. Huggins, 2005: Quantitative precipitation forecasting of wintertime storms in the sierra nevada: sensitivity to the microphysical parameterization and horizontal resolution. Mon. Wea. Rev., 133, 2834–2859.CrossRefGoogle Scholar
  15. Harper, K., L. W. Uccellini, E. Kalnay, K. Carey, and L. Morone, 2007: 50th Anniversary of operational numerical weather prediction. Bull. Amer. Meteor. Soc., 88, 639–650.CrossRefGoogle Scholar
  16. Houze, Jr R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.Google Scholar
  17. Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842.CrossRefGoogle Scholar
  18. Hong, S.-Y., and J. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  19. Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Amer. Meteor. Soc., 84 pp.Google Scholar
  20. Khain, A., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114, D19209, doi:10.1029/2009JD011827.CrossRefGoogle Scholar
  21. ____, D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663.CrossRefGoogle Scholar
  22. Khairoutdinov, M., D. Randall, and C. DeMott, 2004: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 2136–2154.CrossRefGoogle Scholar
  23. Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 135, 1013–1035.CrossRefGoogle Scholar
  24. ____, R. D. Farley, and H. D. Orville, 1983: Bulk parametrization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1090.CrossRefGoogle Scholar
  25. Liu, C., and M. W. Moncrief, 2007: Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterisations. Mon. Wea. Rev., 135, 2854–2868.CrossRefGoogle Scholar
  26. Liu, L., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the kessler-type parameterizations. J. Atmos. Sci., 61, 1539–1548.Google Scholar
  27. Louis, J.-F., 1979: A Parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202.CrossRefGoogle Scholar
  28. Miller, M. J., 1974: On the use of pressure as vertical co-ordinate in modelling convection. Quart. J. Roy. Meteor. Soc., 100, 155–162.CrossRefGoogle Scholar
  29. ____, and R. P. Pearce, 1974: A three dimensional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 100, 133–154.CrossRefGoogle Scholar
  30. ____, and A. A. White, 1984: On the non-hydrostatic equation in pressure and sigma coordinates. Quart. J. Roy. Meteor. Soc., 110, 515–533.CrossRefGoogle Scholar
  31. Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.CrossRefGoogle Scholar
  32. ____, and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealised supercell thunderstorm simulations. Mon. Wea. Rev., 139, 1103–1130.CrossRefGoogle Scholar
  33. Palmer, T. N., 2012: Towards the probabilistic earth-system simulator: a vision for the future of climate and weather prediction. Quart.J. Roy. Metor. Soc., 138, 841–861, doi:10.1002/qj.1923.CrossRefGoogle Scholar
  34. Phillips, N. A., 1956: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–185.CrossRefGoogle Scholar
  35. Randall, D. A., K. Xu, R. J. C. Sommerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9, 1683–1697.CrossRefGoogle Scholar
  36. ____, M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.CrossRefGoogle Scholar
  37. Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: A model for the seeder-feeder process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.CrossRefGoogle Scholar
  38. ____, and Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow coldfrontal rainbands. J. Atmos. Sci., 41, 2949–2972.CrossRefGoogle Scholar
  39. Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasuno, 2005: Development of a global cloud resolving model — a multi-scale structure of tropical convections. J. Earth Simulator, 3, 11–19.Google Scholar
  40. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech Notes -468+S.Google Scholar
  41. Stensrud, D. J., 2007: Parameterisation Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 488 pp.CrossRefGoogle Scholar
  42. Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterisation with multiple Ice precipitation categories. J. Appl. Meteorol., 44, 445–466.CrossRefGoogle Scholar
  43. ____, 2009: Cloud and Precipitation Microphysics. Principles and Parameterizations. Cambridge University Press, 392 pp.CrossRefGoogle Scholar
  44. Tao, W.-K, J. Simpson, and M. McCumber, 1989: Notes and correspondence, an ice-water saturation adjustment. Mon. Wea. Rev., 117, 231–235.CrossRefGoogle Scholar
  45. ____, and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97–137.CrossRefGoogle Scholar
  46. Van den Heever, S., and W. R. Cotton, 2004: The impact of the hail size on simulated supercell storms. J. Atmos. Sci., 61, 1596–1609.CrossRefGoogle Scholar
  47. Van Weverberg, K., Nicole P. M. van Lipzig, and L. Delobbe, 2011: The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Wea. Rev., 139, 1131–1147.CrossRefGoogle Scholar
  48. Wang, C., and J. S. Chang, 1993: A three-dimensional numerical model of cloud dynamics, microphysics and chemistry. 1. Concepts and Formulation. J. Geophys. Res., 98, 14827–14844.CrossRefGoogle Scholar
  49. Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.CrossRefGoogle Scholar
  50. White, A. A., 1989: An extended version of a nonhydrostatic, pressure coordinate model. Quart. J. Roy. Meteor. Soc., 115, 1243–1251.CrossRefGoogle Scholar
  51. Xu, K., and Coauthors, 2000: Cloud-resolving model intercomparison with ARM summer IOP data, 2000, tenth RM science team meeting processes, San Antonio, March 13–17 2000.Google Scholar
  52. Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction (ARPS)-A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 75161–75193.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mary-Jane Morongwa Bopape
    • 1
    • 2
    • 5
    Email author
  • Francois Alwyn Engelbrecht
    • 1
    • 3
  • David A. Randall
    • 4
  • Willem Adolf Landman
    • 1
    • 2
  1. 1.Natural Resources and the EnvironmentCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Geography, Geoinformatics and MeteorologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Geography, Archeology and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  4. 4.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA
  5. 5.Council for Scientific and Industrial ResearchPretoriaGauteng, South Africa

Personalised recommendations