Skip to main content
Log in

Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Ulaanbaatar, the capital city of Mongolia, with a population of 1.1 million is located at an altitude of about 1350 m and in a valley. This study is the first to document the characteristics of the urban heat island (UHI) in Ulaanbaatar. Data from two meteorological stations, an urban site and a rural site, for the 31-year period 1980–2010 are used for UHI analysis. The average UHI intensity is 1.6°C. The UHI intensity exhibits a large seasonal dependence, being strongest in winter (3.3°C) and weakest in summer (0.3°C). The average daily maximum UHI intensity is 4.3°C. The strongest daily maximum UHI intensity occurs in winter with an average intensity of 6.4°C, and the weakest one occurs in summer with an average intensity of 2.5°C. The occurrence frequency of the daily maximum UHI intensity in the nighttime is 5.6 times that in the daytime. A multiple linear regression analysis is undertaken to examine the relative importance of meteorological parameters (previous-day maximum UHI intensity, wind speed, cloudiness, and relative humidity) that affect the daily maximum UHI intensity. The half of the variance (49.8%) is explained by the multiple linear regression model. The previous-day maximum UHI intensity is the most important parameter and is positively correlated with the daily maximum UHI intensity. Cloudiness is the second most important parameter and is negatively correlated with the daily maximum UHI intensity. When the data are classified into daytime/nighttime and season, the relative importance of the meteorological parameters changes. The most important parameter in spring and summer is cloudiness, while in autumn and winter it is the previous-day maximum UHI intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarsaikhan, D., M. Ganzorig, H. H. Blotevogel, B. Nergui, and R. Gantuya, 2009: Integrated method to extract information from high and very high resolution RS images for urban planning. J. Geogr. Reg. Plann., 2, 258–267.

    Google Scholar 

  • Boo, K.-O., and S.-N. Oh, 2000: Characteristics of spatial and temporal distribution of air temperature in Seoul, 1999. J. Korean Meteor. Soc., 36, 499–506 (in Korean with English abstract).

    Google Scholar 

  • Fan, H., and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes. Atmos. Environ., 39, 73–84.

    Article  Google Scholar 

  • Figuerola, P. I., and N. A. Mazzeo, 1998: Urban-rural temperature differences in Buenos Aires. Int. J. Climatol., 18, 1709–1723.

    Article  Google Scholar 

  • Giovannini, L., D. Zardi, and M. De Franceschi, 2011: Analysis of the urban thermal fingerprint of the city of Trento in the Alps. J. Appl. Meteor. Climatol., 50, 1145–1162.

    Article  Google Scholar 

  • Goldreich, Y., 1984: Urban topoclimatology. Prog. Phys. Geog., 8, 336–364.

    Article  Google Scholar 

  • Google Inc., 2011: Google Earth. http://maps.google.com. Accessed 30 September 2011.

    Google Scholar 

  • Hinkel, K. M., F. E. Nelson, A. E. Klene, and J. H. Bell, 2003: The urban heat island in winter at Barrow, Alaska. Int. J. Climatol., 23, 1889–1905.

    Article  Google Scholar 

  • Jarvis, A., H. I. Reuter, A. Nelson, and E. Guevara, 2008: Hole-filled SRTM for the globe version 4. http://srtm.csi.cgiar.org. Accessed 8 September 2011.

    Google Scholar 

  • Jauregui, E, L. Godinez, and F. Cruz, 1992: Aspects of heat-island development in Guadalajara, Mexico. Atmos. Environ., 26B, 391–396.

    Google Scholar 

  • Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteorol., 41, 651–659.

    Article  Google Scholar 

  • _____, and ______, 2004: Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol., 79, 151–164.

    Article  Google Scholar 

  • Klysik, K., and K. Fortuniak, 1999: Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos. Environ., 33, 3885–3895.

    Article  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259–263.

    Article  Google Scholar 

  • Lee, S.-H., and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227–237.

    Article  Google Scholar 

  • Liu, W., C. Ji, J. Zhong, X. Jiang, and Z. Zheng, 2007: Temporal characteristics of the Beijing urban heat island. Theor. Appl. Climatol., 87, 213–221.

    Article  Google Scholar 

  • Magee, N., J. Curtis, and G. Wendler, 1999: The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol., 64, 39–47.

    Article  Google Scholar 

  • Montávez, J. P., A. Rodríguez, and J. I. Jiménez, 2000: A study of the urban heat island of Granada. Int. J. Climatol., 20, 899–911.

    Article  Google Scholar 

  • Morris C. J. G., I. Simmonds, and N. Plummer, 2001: Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J. Appl. Meteorol., 40, 169–182.

    Article  Google Scholar 

  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1–24.

    Google Scholar 

  • _____, 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

    Google Scholar 

  • Ryu, Y.-H., and J.-J. Baik, 2012: Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteor. Climatol., 51, 842–854.

    Article  Google Scholar 

  • Taha, H., 1997: Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energ. Buildings, 25, 99–103.

    Article  Google Scholar 

  • Unger, J., 1996: Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary. Theor. Appl. Climatol., 54, 147–151.

    Article  Google Scholar 

  • Unwin, D. J., 1980: The synoptic climatology of Birmingham’s urban heat island, 1965–74. Weather, 35, 43–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Jin Baik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganbat, G., Han, JY., Ryu, YH. et al. Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia. Asia-Pacific J Atmos Sci 49, 535–541 (2013). https://doi.org/10.1007/s13143-013-0047-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0047-5

Key words

Navigation