Advertisement

Analysis of summertime atmospheric transport of fine particulate matter in Northeast Asia

  • Hikari ShimaderaEmail author
  • Hiroshi Hayami
  • Yu Morino
  • Toshimasa Ohara
  • Satoru Chatani
  • Shuichi Hasegawa
  • Naoki Kaneyasu
Article

Abstract

In Northeast Asia, the effect of long-range transport of air pollutants is generally pronounced in spring and winter, but can be important even in summer. This study analyzed summer-time atmospheric transport of elemental carbon (EC) and sulfate (SO4 2−) with the Community Multiscale Air Quality (CMAQ) model driven by the Weather Research and Forecasting (WRF) model. The WRF/CMAQ modeling system was applied to regions ranging from Northeast Asia to the Greater Tokyo Area in Japan in summer 2007. In terms of EC, while the model simulated well the effect of long-range transport, the simulation results indicated that domestic emissions in Japan dominantly contributed (85%) to EC concentrations in the Greater Tokyo. In terms of SO4 2−, the simulation results indicated that both domestic emissions (62%) and long-range transport from the other countries (38%) substantially contributed to SO4 2− concentrations in the Greater Tokyo. Distinctive transport processes of SO4 2− were associated with typical summer-time meteorological conditions in the study region. When a Pacific high-pressure system covered the main island of Japan, domestic emissions, including volcanic emission, dominantly contributed to SO4 2− concentrations in the Greater Tokyo. When a high-pressure system prevailed over the East China Sea and low-pressure systems passed north of Japan, synoptic westerly winds associated with this pressure pattern transported a large amount of SO4 2− from the continent to Japan. In addition, although heavy precipitation and strong wind decreased SO4 2− concentrations near the center of a typhoon, peripheral typhoon winds occasionally played an important role in long-range transport of SO4 2−.

Key words

Long-range transport air quality model sulfate elemental carbon PM2.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa, M., T. Ohara, T. Hiraki, O. Oishi, A. Tsuji, M. Yamagami, K. Murano, and H. Mukai, 2010: Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent. Atmos. Environ., 44, 381–391.CrossRefGoogle Scholar
  2. Andres, R. J., and A. D. Kasgnoc, 1998: A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res., 103, 25251–25261.CrossRefGoogle Scholar
  3. Badarinath, K. V. S., S. K. Kharol, A.R. Sharma, V. Ramaswamy, D. G. Kaskaoutis, and H. D. Kambezidis, 2009: Investigations of an intense aerosol loading during 2007 cyclone SIDR — A study using satellite data and ground measurements over Indian region. Atmos. Environ., 43, 3708–3716.CrossRefGoogle Scholar
  4. Bond, T.C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.CrossRefGoogle Scholar
  5. Byun, D. W., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modelling system. Appl. Mech. Rev., 59, 51–77.CrossRefGoogle Scholar
  6. Carmichael, G. R., and Coauthors, 2002: The MICS-Asia study: Model intercomparison of long-range transport and sulfur deposition in East Asia. Atmos. Environ., 36, 175–199.CrossRefGoogle Scholar
  7. Carter, W. P. L., 2000: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment. Final Report to California Air Resources Board Contract No. 92-329 and (in part) 95-308.Google Scholar
  8. Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A Three-Dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation. J. Geophys. Res., 92, 14681–14700.CrossRefGoogle Scholar
  9. Chang, L. T.-C., J.-H. Tsai, J.-M. Lin, Y.-S. Huang, and H.-L. Chiang, 2011: Particulate matter and gaseous pollutants during a tropical storm and air pollution episode in Southern Taiwan. Atmos. Res., 99, 67–79.CrossRefGoogle Scholar
  10. Chatani, S., T. Morikawa, S. Nakatsuka, S. Matsunaga, and H. Minoura, 2011: Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmos. Environ., 45, 1383–1393.CrossRefGoogle Scholar
  11. ____, and Coauthors, 2013: Multi-model analyses of dominant factors influencing elemental carbon in Tokyo Metropolitan Area of Japan, Aerosol Air Qual. Res., submitted.Google Scholar
  12. Chen, F. and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system — Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.CrossRefGoogle Scholar
  13. Draxler, R. R., and G. D. Hess, 1997: Description of the Hysplit_4 modeling system. NOAA Tech. Memo. ERL ARL-224.Google Scholar
  14. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.CrossRefGoogle Scholar
  15. Emery, C., E. Tai, and G. Yarwood, 2001: Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes. Prepared for The Texas Natural Resource Conservation Commission 12118 Park 35 Circle Austin, Texas 78753.Google Scholar
  16. Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 43–67.CrossRefGoogle Scholar
  17. Feng, Y., A. Wang, D. Wu, and X. Xu, 2007: The influence of tropical cyclone Melor on PM10 concentrations during an aerosol episode over the Pearl River Delta region of China: Numerical modeling versus observational analysis. Atmos. Environ., 41, 4349–4365.CrossRefGoogle Scholar
  18. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181–3210.CrossRefGoogle Scholar
  19. Hallquist, M., and Coauthors, 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys., 9, 5155–5236.CrossRefGoogle Scholar
  20. Hong, S.-Y. and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  21. Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, No. 437, 61 pp.Google Scholar
  22. Japan Petroleum Energy Center, cited 2010: JATOP: Japan Auto-Oil Program. [Available online at http://www.pecj.or.jp/english/jcap/jatop/index_jatop.html.]Google Scholar
  23. JMA, cited 2007: Monthly Volcanic Activity Report. [Available online at http://www.seisvol.kishou.go.jp/tokyo/STOCK/monthly_v-act_doc/monthly_vact_2007.htm.] (in Japanese).Google Scholar
  24. Kain, J. S., 2004: The Kain-Fritsch convective parameterization. An update. J. Appl. Meteorol., 43, 170–181.CrossRefGoogle Scholar
  25. Kannari, A., Y. Tonooka, T. Baba, and K. Murano, 2007: Development of multiple-species 1 km × 1 km resolution hourly basis emissions inventory for Japan. Atmos. Environ., 41, 3428–3439.CrossRefGoogle Scholar
  26. Kajino, M., H. Ueda, H. Satsumabayashi, and J. An, 2004: Impacts of the eruption of Miyakejima Volcano on air quality over far east Asia. J. Geophys. Res., 109, D21204, doi:10.1029/2004JD004762.CrossRefGoogle Scholar
  27. Lee, S.-H., Y.-K. Kim, H.-S. Kim, and H.-W. Lee, 2007: Influence of dense surface meteorological data assimilation on the prediction accuracy of ozone pollution in the southeastern coastal area of the Korean Peninsula. Atmos. Environ., 41, 4451–4465.CrossRefGoogle Scholar
  28. Lin, M., T. Holloway, G. R. Carmichael, and A. M. Fiore, 2010: Quantifying pollution inflow and outflow over East Asia in spring with regional and global models. Atmos. Chem. Phys., 10, 4221–4239.CrossRefGoogle Scholar
  29. Minoura, H., K. Takahashi, J. C. Chow, and J. G. Watson, 2006: Multi-year trend in fine and coarse particle mass, carbon, and ions in downtown Tokyo, Japan. Atmos. Environ., 40, 2478–2487.CrossRefGoogle Scholar
  30. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.CrossRefGoogle Scholar
  31. Murano, K., 2006: International Co-operative Survey to Clarify the Transboundary Air Pollution Across the Northern Hemisphere (Abstract of the Final Report), Summary Report of Research Results under the GERF (Global Environment Research Fund) in FY2004, 237–243, Research and Information Office, Global Environment Bureau, Ministry of the Environment, Government of Japan.Google Scholar
  32. Nansai, K., N. Suzuki, K. Tanabe, S. Kobayashi, and Y. Moriguchi, 2004: Design of Georeference-Based Emission Activity Modeling System (GBEAMS) for Japanese emission inventory management. Proc., the 13th International Emission Inventory Conference in Clearwater, Florida, United States of America.Google Scholar
  33. Nawahda, A., K. Yamashita, T. Ohara, J. Kurokawa, and K. Yamaji, 2012: Evaluation of premature mortality caused by exposure to PM2.5 and ozone in East Asia: 2000, 2005, 2020. Water, Air Soil Pollut., 223, 3445–3459.CrossRefGoogle Scholar
  34. Neupane, B., M. Jerrett, R. T. Burnett, T. Marrie, A. Arain, and M. Loeb, 2010: Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am. J. Resp. Crit. Care, 181, 47–53.CrossRefGoogle Scholar
  35. NIES, 2009: Forecast and impact analysis of fine particles and photochemical pollutants in urban air environment, Report of Special Research from the National Institute for Environmental Studies, Japan, SR-91-2009. (in Japanese).Google Scholar
  36. Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka, 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys., 7, 4419–4444.CrossRefGoogle Scholar
  37. Pleim, J. E., and J. S. Chang, 1992: A Non-Local Closure Model for Vertical Mixing in the Convective Boundary Layer. Atmos. Environ., 26A, 965–981, 1992.Google Scholar
  38. Pirovano, G., and Coauthors, 2012: Investigating impacts of chemistry and transport model formulation on model performance at European scale. Atmos. Environ., 53, 93–109.CrossRefGoogle Scholar
  39. Shimadera, H., A. Kondo, A. Kaga, K. L. Shrestha, and Y. Inoue, 2009: Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan. Atmos. Environ., 43, 5894–5907.CrossRefGoogle Scholar
  40. ____, _____, K. L. Shrestha, A. Kaga, and Y. Inoue, 2011: Annual sulfur deposition through fog, wet and dry deposition in the Kinki Region of Japan. Atmos. Environ., 45, 6299–6308.CrossRefGoogle Scholar
  41. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Baker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR.Google Scholar
  42. Streets, D. G., K. F. Yarber, J.-H. Woo, and G. R. Carmichael, 2003: Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochem. Cycles, 17, 10/1–10/20.CrossRefGoogle Scholar
  43. Ueda, K., H. Nitta, M. Ono, and A. Takeuchi, 2009: Estimating mortality effects of fine particulate matter in Japan: A comparison of time-series and case-crossover analyses. J. Air Waste Manage. Assoc., 59, 1212–1218.CrossRefGoogle Scholar
  44. Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184–194.Google Scholar
  45. Zhang, M., I. Uno, Y. Yoshida, Y. Xu, Z. Wang, H. Akimoto, T. Bates, T. Quinn, A. Bandy, and B. Blomquist, 2004: Transport and transformation of sulfur compounds over East Asia during the TRACE-P and ACE-Asia campaigns. Atmos. Environ., 38, 6947–6959.CrossRefGoogle Scholar
  46. Zhang, Q., and Coauthors, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hikari Shimadera
    • 1
    • 6
    Email author
  • Hiroshi Hayami
    • 1
  • Yu Morino
    • 2
  • Toshimasa Ohara
    • 2
  • Satoru Chatani
    • 3
  • Shuichi Hasegawa
    • 4
  • Naoki Kaneyasu
    • 5
  1. 1.Central Research Institute of Electric Power IndustryAbikoJapan
  2. 2.National Institute for Environmental StudiesOnogawa, TsukubaJapan
  3. 3.Toyota Central R&D Labs., Inc.Yokomichi, NagakuteJapan
  4. 4.Center for Environmental Science in SaitamaKamitanadare, KazoJapan
  5. 5.National Institute of Advanced Industrial Science and TechnologyOnogawa, TsukubaJapan
  6. 6.Center for Environmental Innovation Design for SustainabilityOsaka UniversitySuita, OsakaJapan

Personalised recommendations