Advertisement

Asia-Pacific Journal of Atmospheric Sciences

, Volume 48, Issue 4, pp 433–448 | Cite as

Synoptic-scale physical mechanisms associated with the Mei-yu front: A numerical case study in 1999

  • Nguyen Minh Truong
  • Vu Thanh Hang
  • Roger A. PielkeSr.
  • Christopher L. Castro
  • Koji Dairaku
Article

Abstract

The Mei-yu front system occurring from 23 to 27 June 1999 consists of the Mei-yu front and the dewpoint front, which confine a warm core extending from the eastern flank of the Tibetan Plateau to the west of 145°E. To further understand the synopticscale physical mechanisms associated with the Mei-yu front system, the present study proposes another insight into the physical significance of the x-component relative vorticity (XRV) whose vertical circulation is expected to tilt isentropic surfaces. The XRV equation diagnoses exhibit that the twisting effect of the planetary vorticity (TEPV) is positive along the Mei-yu front and negative in the dewpoint front region, and tilts isentropic surfaces from south to north in the Mei-yu frontal zone. Conversely, the meridional gradient of the atmospheric buoyancy (MGAB) tilts isentropic surfaces in the opposite direction and maintains negative in the regions where the TEPV is positive and vice versa. Thus, the TEPV plays the role of the Mei-yu frontogenesis, whereas the MGAB demonstrates the Meiyu frontolysis factor. Both terms control the evolution of the cross-front circulation. The other terms show much minor contributions in this case study. The present simulations also indicate that the weakening of the upper-level jet evidently induces the weakening of the Mei-yu front and reduces the amplitude of the East Asia cold trough. Furthermore, the impact can also penetrate into the lower troposphere in terms of mesoscale disturbances and precipitation, proving that the upper-level jet imposes a noticeable top-down influence on the Mei-yu front system.

Key words

Mei-yu frontogenesis frontolysis twisting effect atmospheric buoyancy ageostrophic twisting effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bluestein, H. B., 1993: Synoptic-dynamic meteorology in midlatitudes, Vol.2, Oxford University Press, 594 pp.Google Scholar
  2. Chang, C.-P., L. Yi, and G. T.-J. Chen, 2000: A numerical simulation of vortex development during the 1992 East Asian summer monsoon onset using the Navy’s regional model. Mon. Wea. Rev., 128, 1604–1631.CrossRefGoogle Scholar
  3. Chen, G. T.-J., and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942–953.CrossRefGoogle Scholar
  4. —, C.-C. Wang, and S.-W. Chang, 2008: A diagnostic case study of Mei-yu frontogenesis and development of wavelike frontal disturbances in the subtropical environment. Mon. Wea. Rev., 136, 41–61.CrossRefGoogle Scholar
  5. —, —, and L.-F. Lin, 2006: A diagnostic study of a retreating Mei-yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874–896.CrossRefGoogle Scholar
  6. —, —, and S.C-S. Liu, 2003: Potential vorticity diagnostics of a Mei-yu front case. Mon. Wea. Rev., 131, 2680–2696.CrossRefGoogle Scholar
  7. Chen, G. T.-J., C.-C. Wang, and A.-S. Wang, 2007: A case study of subtropical frontogenesis during a blocking event. Mon. Wea. Rev., 135, 2588–2609.CrossRefGoogle Scholar
  8. Chien, F.-C., Y.-H. Kuo, and M.-J. Yang, 2002: Precipitation forecast of MM5 in the Taiwan area during the 1998 Mei-yu season. Wea. Forecasting, 17, 739–754.CrossRefGoogle Scholar
  9. Cho, H.-R., and G. T.-J. Chen, 1995: Mei-yu frontogenesis. J. Atmos. Sci., 52, 2109–2120.CrossRefGoogle Scholar
  10. Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29.CrossRefGoogle Scholar
  11. Davies-Jones, R., 1991: The frontogenetical forcing of secondary circulations. Part I: The duality and generalization of the Q vector. J. Atmos. Sci., 48, 497–509.CrossRefGoogle Scholar
  12. Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142.CrossRefGoogle Scholar
  13. Holton, J. R., 2004: An introduction to dynamic meteorology. 4th Edition. Academic Press, 535 pp.Google Scholar
  14. Jung, J.-H., and A. Arakawa, 2008: A three-dimensional anelastic model based on the vorticity equation. Mon. Wea. Rev., 136, 276–294.CrossRefGoogle Scholar
  15. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  16. Kawatani, Y., and M. Takahashi, 2003: Simulation of the Baiu front in a High Resolution AGCM. J. Meteor. Soc. Japan, 81, 113–126.CrossRefGoogle Scholar
  17. Lau, K.-M., G. J. Yang, and S.H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116, 18–37.CrossRefGoogle Scholar
  18. Ninomiya, K., and Y. Shibagaki, 2007: Multi-scale features of the Meiyu-Baiu front and associated precipitation systems. J. Meteor. Soc. Japan, 85, 103–122.CrossRefGoogle Scholar
  19. Pielke Sr., R. A., 2002: Mesoscale Meteorological Modeling (2 nd edition). Academic Press. 676 pp.Google Scholar
  20. —, and Coauthors, 1992: A comprehensive meteorological modeling system RAMS. Meteor. Atmos. Phys., 49, 69–91.CrossRefGoogle Scholar
  21. Qian, J.-H., W.-K. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 3–27.CrossRefGoogle Scholar
  22. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  23. Sampe, T., and S-P. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113–134.CrossRefGoogle Scholar
  24. Shen, X., M. Kimoto, A. Sumi, A. Numaguti, and J. Matsumoto, 2001: Simulation of the 1998 East Asian summer monsoon by the CCSR/NIES AGCM. J. Meteor. Soc. Japan, 79, 741–757.CrossRefGoogle Scholar
  25. Shibagaki, Y., and K. Ninomiya, 2005: Multi-scale interaction processes associated with development of a sub-synoptic-scale depression on the Meiyu-Baiu frontal zone. J. Meteor. Soc. Japan, 83, 219–236.CrossRefGoogle Scholar
  26. Stonitsch, J. R., and P. M. Markowski, 2007: Unusually long duration, multiple-Doppler radar observations of a front in a convective boundary layer. Mon. Wea. Rev., 135, 93–117.CrossRefGoogle Scholar
  27. Truong, N. M., T. T. Tien, R. A. Pielke Sr., C. L. Castro, and G. Leoncini, 2009: A modified Kain-Fritsch scheme and its application for simulation of an extreme precipitation event in Vietnam. Mon. Wea. Rev., 137, 766–789.CrossRefGoogle Scholar
  28. Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single moment scheme. Atmos. Res., 38, 29–62.CrossRefGoogle Scholar
  29. Wang, B., 1987: The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci., 44, 2978–2994.CrossRefGoogle Scholar
  30. Wang, Y., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J. Climate, 16, 1721–1738.CrossRefGoogle Scholar
  31. Yanai, M., and G-X. Wu, 2006: Effects of the Tibetan plateau. The Asian monsoon, Springer. Praxis Publishing, 513–549.Google Scholar
  32. Yasunari, T., and T. Miwa, 2006: Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the Meiyu/Baiu frontal zone: A case study in 1998. J. Meteor. Soc. Japan, 84, 783–803.CrossRefGoogle Scholar
  33. Yoshikane, T., F. Kimura, and S. Emori, 2001: Numerical study on the Baiu front genesis by heating contrast between land and ocean. J. Meteor. Soc. Japan, 79, 671–686.CrossRefGoogle Scholar
  34. Zhang, Q.-H., K.-H. Lau, Y.-H. Kuo, and S.-J. Chen, 2003: A numerical study of a mesoscale convective system over the Taiwan strait. Mon. Wea. Rev., 131, 1150–1170.CrossRefGoogle Scholar
  35. Zhou, Y., S. Gao, and S. S. P Shen, 2004: A diagnostic study of formation and structures of the Meiyu front system over East Asia. J. Meteor. Soc. Japan, 82, 1565–1576.CrossRefGoogle Scholar

Copyright information

© Korean Meteorological Society and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Nguyen Minh Truong
    • 1
    • 5
  • Vu Thanh Hang
    • 1
  • Roger A. PielkeSr.
    • 2
  • Christopher L. Castro
    • 3
  • Koji Dairaku
    • 4
  1. 1.Hanoi University of ScienceHanoiVietnam
  2. 2.CIRESUniversity of ColoradoBoulderUSA
  3. 3.Department of Atmospheric SciencesUniversity of ArizonaTucsonUSA
  4. 4.Storm, Flood, and Landslide Research DepartmentNational Research Institute for Earth Science and Disaster PreventionIbarakiJapan
  5. 5.Hanoi University of ScienceThanh Xuan, HanoiVietnam

Personalised recommendations