Skip to main content
Log in

Examination of sulfate chemistry sensitivity in a mid-latitude and tropical storm using a cloud resolving model

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We examine the sensitivities of heterogeneous sulfate chemistry in a mid-latitude and tropical storm using a cloud resolving model. Both thermodynamic environments show unstable conditions favorable for development of intensive convection, with more CAPE in tropical compared to mid-latitude storm. Compared with the observed severe storms, modeled results show a relatively good agreement with the radar and surface chemical observations. Microphysical evaluation indicates that the accretion and autoconversion appear to be most important processes in such considered clouds. This sensitivity simulation is an upper bound for conversion of S (IV) to sulfate. The tropical convective storm produces for about 2.5 times more sulfate compared to mid-latitude storm and converts more SO2 to sulfate, increasing wet deposition of sulfur. The results for a midlatitude run indicate that aerosol nucleation and impact scavenging account for between 18.9% and 28.9% of the in-cloud sulfate ultimately deposited. As a result of greater rainfall efficiency, tropical storm shows about two times higher sub-cloud scavenging rate than mid-latitude storm. The oxidation of S (IV) to SO4 −2 in cloud droplets and in precipitation is found to be dominant in both convective storms accounting almost with the same percentage contribution of 45.4% and 46.3% to sulfur deposition, respectively. In-cloud oxidation contribute a larger fraction of the total amount of sulfur deposited in tropical case (29.2%) when compared to the mid-latitude case (11.8), respectively. Neglecting aqueous-phase chemistry in ice-phase hydrometeors in both convective clouds led to overpredict deposition of about 40% to 33% relative to the base runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth, M. C., 1994: Numerical modelling of sulfur and nitrogen chemistry in a narrow cold-frontal rainband: The impact of meteorological and chemical parameters. J. Appl. Meteor., 33, 855–868.

    Article  Google Scholar 

  • —, A. L. Stuart, and W. C. Skamarock, 2001: Numerical simulation of the July 10 Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone/Deep Convection storm: Redistribution of soluble tracers. J. Geophys. Res., 106, 12,381–12,400.

    Google Scholar 

  • —, and Coauthors, 2007: Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos. Chem. Phys., 7, 4709–4731.

    Article  Google Scholar 

  • Betterton, E. A. and D. J. Anderson, 2001: Autoxidation of N(III), S(IV), and other species in frozen solution — A possible pathway for enhanced chemical transformation in freezing systems. J. Atmos. Chem., 40, 171–189.

    Article  Google Scholar 

  • Chatfield, R. B., and P. J. Crutzen, 1984: Sulfur dioxide in remote occanic air: Cloud transport of reactive precursors. J. Geophys. Res., 89, 7111–7132.

    Article  Google Scholar 

  • Chaumerliac, N., E. Richard, J.-P. Pinty, and E. C. Nickerson, 1987: Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: Twodimensional results for continental and maritime clouds. J. Geophys. Res., 92(D3), 3114–3126, doi:10.1029/JD092iD03p03114.

    Article  Google Scholar 

  • Crutzen, P. J., and M. G. Lawrence, 2000: The impact of precipitation scavenging on the transport of trace gases: A 3-dimensional model sensitivity study. J. Atmos. Chem., 37, 81–112.

    Article  Google Scholar 

  • Ćurić, M. and D. Janc, 1995: On the sensitivity of the continuous accretion rate equation used in bulk-water parameterization schemes. Atmos. Res., 39, 313–332.

    Article  Google Scholar 

  • —, and —, 1997: On the sensitivity of hail accretion rates in numerical modeling. Tellus, 49A, 100–107.

    Google Scholar 

  • —, —, and V. Vucković, 2009: The influence of merging and individual storm splitting on mesoscale convective system formation. Atmos. Res., 93, 21–29, doi: 10.1016j.atmosres.2008.10.018.

    Article  Google Scholar 

  • —, and —, 2012: Differential heating influence on hailstorm vortex pair evolution. Quart. J. Roy. Meteor. Soc., 138, 72–80, doi: 10.1002/qj.918.

    Article  Google Scholar 

  • Durran, D. R., 1981: The effects of moisture on mountain lee waves. Ph.D. Thesis, Massachusetts Institute of Technology Boston, MA (NTIS PB 82126621).

  • Easter, R. C., and J. M. Hales, 1983: Interpretation of the OSCAR data for reactive gas scavenging, in Precipitation Scavenging, Dry Deposition, and Resuspension. Elsevier Sci., New York, 649–662.

    Google Scholar 

  • kman, A., C. Wang, J. Ström, and J. Wilson, 2004: Explicit simulation of aerosol physics in a cloud-resolving model: A sensitivity study based on an observed convective cloud. Atmos. Chem. Phys., 4, 773–791.

    Article  Google Scholar 

  • Flossmann, A. I., 1991: The scavengit∼go f two different types of marine aerosol calculated using a two-dimensional detailed cloud model, Tellus, Scr. B. 438, 301–321.

    Article  Google Scholar 

  • Giorgi, F., and W. L. Chameides, 1986: Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J. Geophys. Res., 91, 14,367–14,376.

    Google Scholar 

  • Hegg, D. A., S. A. Rutledge, and P. V. Hobbs, 1986: A numerical model for sulfur and nitrogen scavenging in narrow cold-frontal rainbands 2. discussion of chemical fields. J. Geophys. Res., 91(D13), 14,403–14,416, doi:10.1029/JD091iD13p14403.

    Article  Google Scholar 

  • Hsie, E.-Y., R. D. Farley, and R. D. Orville, 1980: Numerical simulation of ice-phase convective cloud seeding. J. Appl. Meteorol., 19, 950–977.

    Article  Google Scholar 

  • Iribarne and Barrie, 1995: The oxidation of S (IV) during riming by cloud droplets. J. Atmos. Chem., 21, 97–114.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Kreidenweis, S. M., Y. Zhang, and G. R. Taylor, 1997: The effects of clouds on aerosol and chemical species production and distribution, 2. Chemistry model description and sensitivity analysis. J. Geophys. Res., 102, 23,867–23,882.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk water parameterization in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Martin, L. R., and D. E. Damaschen, 1981: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH. Atmos. Environ., 15, 191–195.

    Article  Google Scholar 

  • Orville, H. D., and F. J. Kopp, 1977: Numerical simulation of the history of a hailstorm. J. Atmos. Sci., 34, 1596–1618.

    Article  Google Scholar 

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of clouds and precipitation. 2nd ed., Kluwer Acad. Norwell, Mass.

  • Rutledge, S. A., D. A. Hegg, and P. V. Hobbs, 1986: A numerical model for sulfur and nitrogen scavenging in narrow cold-frontal rainbands. Part 1: Model description and discussion of microphysical fields. J. Geophys. Res., 91, 14,385–14,402.

    Article  Google Scholar 

  • Sato, K., T. Daimon, N. Takenaka, H. Bandow, and Y. Maeda, 1996: Decrease of solute in aqueous solution in freezing process, in Proc. from the NIPR Symposium on Polar Meteorology and Glaciology, 10, 138–148 pp.,Natl. Inst. Of Polar Res., Tokyo.

    Google Scholar 

  • Seinfeld, J. H., 1986: Atmospheric Chemistry and Physics of Air Pollution, John Wiley, New York.

    Google Scholar 

  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Amos. Sci., 27, 299–307.

    Google Scholar 

  • Scott B. C., and D. J. Luecken, 1992: The sensitivity of modeled sulfate wet deposition to the meteorological values used as input. Atmos. Environ., 26A(4), 559–569.

    Google Scholar 

  • Smith, P. L, G. G. Myers, and H. D. Orville, 1975: Radar reflectivity calculations on numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteorol., 14, 1156–1165.

    Article  Google Scholar 

  • Spiridonov, V., and M. Curic, 2003: Application of a cloud model in simulation of atmospheric sulfate transport and redistribution. Part I. Model description. Idojaras. 107, No. 2, 85–115.

    Google Scholar 

  • —, Z. Dimitrovski, and M. Curic, 2010: A three-dimensional simulation of supercell convective storm. Adv. in Meteorol., ID 234731 doi:10.1155/2010/234731, 15 pp.

  • Stuart, A. L., and M. Z. Jacobson, 2003: A timescale investigation of volatile chemical retention during hydrometeor freezing: Nonrime freezing and dry growth riming without spreading. J. Geophys. Res., 108(D6), 4178.

    Article  Google Scholar 

  • Takenaka, N., A. Ueda, T. Daimon, H. Bandow, T. Dohmaru, and Y. Maeda, 1996: Accelerated mechanism of chemical reaction by freezing: The reaction of nitrous acid with dissolved oxygen. J. Phys. Chem., 100, 13,874–13,884.

    Article  Google Scholar 

  • Taylor, G. R., 1989: Sulfate production and deposition in mid-latitude continental cumulus clouds II, Chemistry model formulation and sensitivity analysis. J. Atmos. Sci., 46(13), 1991–2007.

    Article  Google Scholar 

  • —, S. Kreidenweis, and Y. Zhang, 1997: The effects of clouds on aerosol and chemical species production and distribution, Cloud model formulation, mixing, and entrainment. J. Geophys. Res., 102, 23,852–23,865.

    Article  Google Scholar 

  • Tremblay, A. and H. Leighton, 1986: A three-dimensional cloud chemistry model. J. Climate Appl. Meteor., 25, 652–671.

    Article  Google Scholar 

  • Wang, C. and J. S. Chang, 1993a: A three-dimensional numerical model of cloud dynamics, microphysics and chemistry, 4. Cloud chemistry and precipitation chemistry. J. Geophys. Res., 98, 16,799–16,808.

    Google Scholar 

  • —, and —, 1993b: A three-dimensional numerical model of cloud dynamics, microphysics, and chemistry, 1. Concepts and formulation. J. Geophys. Res., 98, 14,827–17,844.

    Google Scholar 

  • —, and P. J. Crutzen, 1995: Impact of a simulated severe local storm on the redistribution of sulfur dioxide. J. Geophys. Res., 100,D6, 11,357–11,367.

    Google Scholar 

  • —, —, V. Ramanathan, and S. F. Williams, 1995: The role of deep convective storm over the tropical Pacific Ocean in the redistribution of atmospheric chemical species. J. Geophys. Res., 100, 11,509–11,516.

    Google Scholar 

  • —, and R. G. Prinn, 2000: On the roles of deep convective clouds in tropospheric chemistry. J. Geophys. Res., 105, 22,269–22,297.

    Google Scholar 

  • Yin, Y., D. J. Parker, and K. S. Carslaw, 2001: Simulation of trace gas redistribution by convective clouds-Liquid phase processes. Atmos. Chem. Phys., 1, 19–36.

    Article  Google Scholar 

  • Xu, A., and G. Carmichael, 1999: An assessment of sulfur deposition in Asia. Atmos. Environ., 33, 3473–3486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlado Spiridonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiridonov, V., Ćurić, M. Examination of sulfate chemistry sensitivity in a mid-latitude and tropical storm using a cloud resolving model. Asia-Pacific J Atmos Sci 48, 391–410 (2012). https://doi.org/10.1007/s13143-012-0036-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-012-0036-0

Key word

Navigation