Skip to main content

The global temperature anomaly and solar North-South asymmetry

Abstract

We investigate whether the global temperature anomaly is associated with the solar North-South asymmetry using data archived approximately for five solar cycles. We are motivated by both the accumulating evidence for the connection of Galactic cosmic-rays (GCRs) to the cloud coverage and recent finding of the association of GCR influx and the solar North-South asymmetry. We have analyzed the data of the observed sunspot, the GCR influx observed at the Moscow station, and the global temperature anomaly. We have found that the mean global temperature anomaly is systematically smaller (∼0.56 in the unit of its standard deviation) during the period when the solar northern hemisphere is more active than the solar southern hemisphere. The difference in the mean value of the global temperature anomaly for the two data sets sub-sampled according to the solar North-South asymmetry is large and statistically significant. We suggest the solar North-South asymmetry is related to the global temperature anomaly through modulating the amount of GCR influx. Finally, we conclude by discussing its implications on a climate model and a direction of future work.

This is a preview of subscription content, access via your institution.

References

  1. Benestad, R. E., and G. A. Schmidt, 2008: Solar trends and global warming, J. Geophys. Res., 114, D14101.

    Article  Google Scholar 

  2. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111(D12), D12106.

    Article  Google Scholar 

  3. Carslaw, K. S., R. G. Harrison, and J. Kirkby, 2002: Cosmic Rays, Clouds, and Climate, Science, 298(5599), 1732–1737.

    Article  Google Scholar 

  4. Chang, H.-Y., 2009: Periodicity of North South asymmetry of sunspot area revisited: Cepstrum analysis, New Astron., 14(2), 133–138.

    Article  Google Scholar 

  5. Cho, I.-H., Y.-S. Kwak, K.-S. Cho, H.-S. Choi, and H.-Y. Chang, 2009: On the Relation Between the Sun and Climate Change with the Solar North-South Asymmetry, J. Astron. Space Sci., 26(1), 25–30.

    Article  Google Scholar 

  6. —, —, H.-Y. Chang, K.-S. Cho, Park Y.-D. and H.-S. Choi, 2011: Dependence of GCRs influx on the Solar North-South Asymmetry, J. Atmos. Sol.-Terr. Phys., 73, 1723–1726.

    Article  Google Scholar 

  7. Egorova, L. V., V. Y. Vovk, and O. A. Troshichev, 2000: Influence of variations of the cosmic rays on atmospheric pressure and temperature in the Southern geomagnetic pole region, J. Atmos. Sol.-Terr. Phys., 62(11), 955–966.

    Article  Google Scholar 

  8. Emmert, J. T., and J. M. Picone, 2010: Climatology of globally averaged thermospheric mass density, J. Geophys. Res., 115(A9), A09326.

    Article  Google Scholar 

  9. Fligge, M., S. K. Solanki, and Y. C. Unruh, 2000: Modeling irradiance variations from the surface distribution of the solar magnetic field, Astron. Astrophys., 353, 380–388.

    Google Scholar 

  10. Forbush, S. E., 1954: World-Wide Cosmic-Ray Variations, 1937–1952, J. Geophys. Res., 59(4), 525–542.

    Article  Google Scholar 

  11. Friis-Christensen, E., and K. Lassen, 1991: Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate, Science, 254(5032), 698–700.

    Article  Google Scholar 

  12. Fröhlich, C., 2006: Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21, Space Sci. Rev., 125, 53–65.

    Article  Google Scholar 

  13. Georgieva, K., 2002: Long-term changes in atmospheric circulation, earth rotation rate and north-south solar asymmetry, Phys. Chem. Earth, 27(6–8), 433–440.

    Google Scholar 

  14. —, B. Kirov, and C. Bianchi, 2005: Long-term variations in the correlation between solar activity and climate, Memorie della Societá Astronomica Italiana, 76, 965.

    Google Scholar 

  15. —, —, P. Tonev, V. Guineva, and D. Atanasov, 2007: Long-term variations in the correlation between NAO and solar activity: The importance of north south solar activity asymmetry for atmospheric circulation, Adv. Space Res., 40(7), 1152–1166.

    Article  Google Scholar 

  16. Goode, P. R., and Coauthors, 2003: Sunshine, Earthshine and Climate Change: II. Solar Origins of Variations in the Earth’s Albedo, J. Korean. Astron. Soc., 36(S1), S83–S91.

    Google Scholar 

  17. Haigh, J. D., 2007: The Sun and the Earth’s Climate, Liv. Rev. Sol. Phys., 4(2).

  18. Hansen, J., and Coauthors, 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations, J. Geophys. Res., 107(D18), ACL 2–1.

    Article  Google Scholar 

  19. Hathaway, D. H., and R. M. Wilson, 2004: What the Sunspot Record Tells Us About Space Climate, Sol. Phys., 224(1–2), 5–19.

    Article  Google Scholar 

  20. Intergovernmental Panel on Climate Change, 2007: Climate Change 2008: The Physical Science Basis. Cambridge University Press. [Total page range].

  21. Javaraiah, J., and R. K. Ulrich, 2006: Solar-Cycle-Related Variations in the Solar Differential Rotation and Meridional Flow: A Comparison, Sol. Phys., 237(2), 245–265.

    Article  Google Scholar 

  22. Jokipii, J. R., 1989: The physics of cosmic-ray modulation, Adv. Space Res., 9(12), 105–119.

    Article  Google Scholar 

  23. Krivova, N. A., S. K. Solanki, M. Fligge, and Y. C. Unruh, 2003: Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause?, Astron. Astrophys., 399, L1–L4.

    Article  Google Scholar 

  24. Marsh, N. D., and H. Svensmark, 2000: Low Cloud Properties Influenced by Cosmic Rays, Phys. Rev. Lett., 85(23), 5004–5007.

    Article  Google Scholar 

  25. Nagashima, K., and L. Morishita, 1980: Twenty-two year modulation of cosmic rays associated with polarity reversal of polar magnetic field of the sun, Planet. Space Sci., 28, 195–205.

    Article  Google Scholar 

  26. Ney, E. P., 1959: Cosmic Radiation and the Weather, Nature, 183(4659), 451–452.

    Article  Google Scholar 

  27. Pudovkin, M. I., 2004: Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron., 5(2), GI2007.

    Article  Google Scholar 

  28. —, S. V. Veretenenko, R. Pellinen, and E. Kyrö, 1997: Meteorological characteristic changes in the high-latitudinal atmosphere associated with forbush decreases of the galactic cosmic rays, Adv. Space Res., 20(6), 1169–1172.

    Article  Google Scholar 

  29. Roldugin, V. C., and B. A. Tinsley, 2004: Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys., 66(13–14), 1143–1149.

    Article  Google Scholar 

  30. Sabbah, I., and M. L. Duldig, 2007: Solar Polarity Dependence of Cosmic Ray Power Spectra Observed with Mawson Underground Muon Telescopes, Sol. Phys., 243(2), 231–235.

    Article  Google Scholar 

  31. Scafetta, N., 2010: Empirical analysis of the solar contribution to global mean air surface temperature change, J. Atmos. Sol.-Terr. Phys., 71, 17–18, 1916–1923.

    Google Scholar 

  32. Solanki, S. K., N. A. Krivova, and T. Wenzler, 2005: Irradiance models. Adv. Space Res., 35(3), 376–383.

    Article  Google Scholar 

  33. Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming, J. Climate., 19, 3055–3069.

    Article  Google Scholar 

  34. Svensmark, H., 2007: Cosmoclimatology: a new theory emerges, Astron. Geophys., 48(1), 1.18–1.24.

    Article  Google Scholar 

  35. —, and E. Friis-Christensen, 1997: Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys., 59, 1225–1232.

    Article  Google Scholar 

  36. Troshichev, O., 2008: Solar wind influence on atmospheric processes in winter Antarctica, J. Atmos. Sol.-Terr. Phys., 70(18), 2381–2396.

    Article  Google Scholar 

  37. Usoskin, I. G., 2008: A History of Solar Activity over Millennia, Solar Physics, 5(3).

  38. Wenzler, T., S. K. Solanki, N. A. Krivova, and C. Fröhlich, 2006: Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields, Astron. Astrophys., 460, 583–595.

    Article  Google Scholar 

  39. Zaatri, A., R. Komm, H. González, R. Howe, and T. Corbard, 2006: North South Asymmetry of Zonal and Meridional Flows Determined From Ring Diagram Analysis of Gong ++ Data, Sol. Phys., 236(2), 227–244.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heon-Young Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, IH., Kwak, YS., Chang, HY. et al. The global temperature anomaly and solar North-South asymmetry. Asia-Pacific J Atmos Sci 48, 253–257 (2012). https://doi.org/10.1007/s13143-012-0025-3

Download citation

Key words

  • Galactic cosmic rays
  • solar north-south asymmetry
  • climate change