Advertisement

Translational Behavioral Medicine

, Volume 6, Issue 4, pp 596–604 | Cite as

Chronic pain assessment from bench to bedside: lessons along the translation continuum

  • Bryan JensenEmail author
Review

Abstract

The first step to providing effective healthcare is accurate assessment and diagnosis. The importance of accurate assessment is particularly important for chronic pain, given its subjective and multidimensional nature. The purpose of the current review is to discuss the dilemma of chronic pain assessment within a translational framework. First, assessment issues specific to chronic pain will be introduced along the entire continuum of translational activities. Important barriers along the continuum include inconsistent measurement of pain, possibly inaccurate preclinical models, and other practical limitations such as time, cost, and training. Second, the review will highlight promising areas worth further consideration in research and practice to bridge some of the gaps that currently impede effective chronic pain assessment and care. Specifically, consideration will be given to observational, biological, and technology-driven measures of chronic pain.

Keywords

Pain Chronic pain Assessment Translation Implementation PROMIS Pain biomarker 

Notes

Acknowledgments

I would like to thank Sandra Gramling, Micheal Southam-Gerow, and Victoria Schivy in their assistance in reviewing the contents of the manuscript and providing invaluable feedback. I must also acknowledge the unending support from my wife, Crystal Jensen.

Compliance with ethical standards

Conflict of interest

The author declares that he has no competing interests.

Adherence to ethical principles

The current review involved no direct involvement from human subjects. All procedures followed were conducted in accordance with ethical standards and guidelines set out by Virginia Commonwealth Universities Institutional Review Board.

References

  1. 1.
    Tsang A, Von Korff M, Lee S, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders. J Pain. 2008; 9: 883-891.CrossRefPubMedGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention. Healthy people 2010: progress review focus area 2 - arthritis, osteoporosis, and chronic back conditions. http://www.cdc.gov/nchs/healthy_people/hp2010/focus_areas/fa02_aocbc2.htm. Updated October 14, 2009. Accessed May 11, 2013.
  3. 3.
    Institute of Medicine. Relieving Pain in America: a Blueprint for Transforming Prevention, Care, Education, and Research. Washington, DC: The Institute of Medicine, The National Academy of Sciences; 2011.Google Scholar
  4. 4.
    Gatchel RP, Peng YB, Fuchs PN, Peters ML, Turk DC. The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychol Bull. 2007; 133: 581-624. doi: 10.1037/0033-2909.133.4.581.CrossRefPubMedGoogle Scholar
  5. 5.
    Turk DC, Melzack R. Handbook of Pain Assessment. New York, NY: The Guilford Press; 2011.Google Scholar
  6. 6.
    Gureje O, Simon GE, Von Korff M. A cross-national study of the course of persistent pain in primary care. Pain. 2001; 92: 195–200. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11323140
  7. 7.
    Alschuler KN, Hoodin F, Murphy SL, Geisser ME. Ambulatory monitoring as a measure of disability in chronic low back pain populations. Clin J Pain. 2011; 27: 707-715. doi: 10.1097/AJP.0b013e318217b7d0.CrossRefPubMedGoogle Scholar
  8. 8.
    Jensen MP, Karoly P. Self-report scales and procedures for assessing pain in adults. In: Turk DC, Melzack R, eds. Handbook of Pain Assessment. New York, NY: The Guilford Press; 2011: 19-44.Google Scholar
  9. 9.
    Dworkin RH, Turk DC, Farrar JT, et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain. 2005; 113: 9-19. doi: 10.1016/j.pain.2004.09.012.CrossRefPubMedGoogle Scholar
  10. 10.
  11. 11.
    Dansie EJ, Turk DC. Assessment of patients with chronic pain. Br J Anaesth. 2013; 111: 19-25. doi: 10.1093/bja/aet124.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mao J. Translational pain research: achievements and challenges. J Pain. 2009; 10(10): 1001-1011. doi: 10.1016/j.jpain.2009.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kazdin AE. Research Design in Clinical Psychology. Boston, Massachusetts: Allyn & Bacon; 2003.Google Scholar
  14. 14.
    Edwards RR, Fillingim RB. Self-reported pain sensitivity: lack of correlation with pain threshold and tolerance. Eur J Pain. 2007; 11(5): 594-598. doi: 10.1016/j.ejpain.2006.09.008.CrossRefPubMedGoogle Scholar
  15. 15.
    Breivik H, Borchgrevink PC, Allen SM, et al. Assessment of pain. Br J Anaesth. 2008; 101: 17-24. doi: 10.1093/bja/aen103.CrossRefPubMedGoogle Scholar
  16. 16.
    Institute for Clinical Systems Improvement. Health care guideline: assessment and management of chronic pain. https://www.icsi.org/_asset/bw798b/ChronicPain.pdf.
  17. 17.
    Sanders SH, Harden RN, Vincente PJ. Evidence-based clinical practice guidelines for interdisciplinary rehabilitation of chronic nonmalignant pain syndrome patients. Pain Pract. 2005; 5(4): 303-315.CrossRefPubMedGoogle Scholar
  18. 18.
    McEwen BS, Kalia M. The role of corticosteroids and stress in chronic pain conditions. Metabolism. 2010; 59(1): S9-S15. doi: 10.1016/j.metabol.2010.07.012.CrossRefPubMedGoogle Scholar
  19. 19.
    Wagner TD, Atlas LY, Lindquist MA, et al. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013; 368: 1388-1397. doi: 10.1056/NEJMoa1204471.CrossRefGoogle Scholar
  20. 20.
    Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 1: the need, reality, challenges, and solutions. Discov Med. 2011; 11(58): 197-207.PubMedGoogle Scholar
  21. 21.
    Wolf S. The real gap between bench and bedside. N Engl J Med. 1974; 209(14): 208-209.Google Scholar
  22. 22.
    Institute of Medicine. Crossing the Quality Chiasm: a New Health System for the 21 st Century. Washington, DC: The National Academies Press; 2001.Google Scholar
  23. 23.
    Zerhouni E. Medicine. The NIH roadmap. Science. 2003; 302: 63-72.CrossRefPubMedGoogle Scholar
  24. 24.
    Fontanarosa PB, DeAngelis CD. Basic science and translational research: call for papers. JAMA. 2001; 285: 2246.CrossRefGoogle Scholar
  25. 25.
    Green LW. Translation 2 research: the roadmap less travelled. Am J Prev Med. 2007; 33(2): 137-138. doi: 10.1016/j.amepre.2007.04.023.CrossRefGoogle Scholar
  26. 26.
    Drolet BC, Lorenzi NM. Translational research: understanding the continuum from bench to bedside. Transl Res. 2011; 157: 1-5. doi: 10.1016/j.trsl.2010.10.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Contopoulos-Ioannidis DG, Ntzani EE, Ioannidis JPA. Translation of highly promising basic science research into clinical applications. Am J Med. 2003; 114: 477-484. doi: 10.1016/S0002-9343(03)00013-5.CrossRefPubMedGoogle Scholar
  28. 28.
    Keramaris NC, Kanakaris NK, Tzioupis C, et al. Translational research: from benchside to bedside. Injury. 2008; 39: 643-650. doi: 10.1016/j.injury.2008.01.051.CrossRefPubMedGoogle Scholar
  29. 29.
    Sussman S, Valente TW, Rohrbach LA. Translation in the health professions: converting science into action. Eval Health Prof. 2006; 29: 7-32. doi: 10.1177/0163278705284441.CrossRefPubMedGoogle Scholar
  30. 30.
    Rutter M, Plomin R. Pathways from science findings to health benefits. Psychol Med. 2008; 39(4): 529-542. doi: 10.1017/S003329170800398X.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones RCW, Backonja M. Review of neuropathic pain screening and assessment tools. Curr Pain Headache Rep. 2013; 17(363): 1-8. doi: 10.1007/s11916-013-0363-6.Google Scholar
  32. 32.
    Mao J. Current challenges in translational pain research. Trends Pharmacol Sci. 2012; 33: 568-573.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    LeBars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev. 2001; 53: 597-652.Google Scholar
  34. 34.
    Barrot M. Tests and models of nociception and pain in rodents. Neuroscience. 2012; 211: 39-50. doi: 10.1016/j.neuroscience.2011.12.041.CrossRefPubMedGoogle Scholar
  35. 35.
    Glajchen M. Chronic pain: treatment barriers and strategies for clinical practice. J Am Board Fam Med. 2001; 14: 211-218.Google Scholar
  36. 36.
    Litcher-Kelly L, Martino SA, Broderick JE, Stone AA. A systematic review of measures used to assess chronic musculoskeletal pain in clinical and randomized controlled clinical trials. J Pain. 2007; 8: 906-913. doi: 10.1016/j.jpain.2007.06.009.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Willner P. The validity of animal models of depression. Psychopharmacology. 1984; 83: 1-16.CrossRefPubMedGoogle Scholar
  38. 38.
    Zeng Q, Wang S, Lim G, et al. Exacerbated mechanical allodynia in rats with depression-like behavior. Brain Res. 2008; 1200C: 27-38.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim H, Chen L, Lim G, et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest. 2012; 122(8): 2940-2954. doi: 10.1172/JCI61884.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Seminowicz DA, Laferriere AL, Millecamps M, Yu JSC, Coderre TJ, Bushnell MC. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. NeuroImage. 2009; 47: 1007-1014. doi: 10.1016/j.neuroimage.2009.05.068.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Decosterd I, Clifford JW. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000; 87: 149-158.CrossRefPubMedGoogle Scholar
  42. 42.
    Dworkin RH, Turk DC, Peirce-Sandner S, et al. Research design considerations for confirmatory chronic pain clinical trials: IMMPACT recommendations. Pain. 2010; 149: 177-193. doi: 10.1016/j.pain.2010.02.018.CrossRefPubMedGoogle Scholar
  43. 43.
    Moore RA, Derry S, Wiffen PJ. Challenges in design and interpretation of chronic pain trials. Br J Anaesth. 2013; 111: 38-45. doi: 10.1093/bja/aet126.CrossRefPubMedGoogle Scholar
  44. 44.
    Turk DC, Dworkin RH, Allen RR, et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain. 2003; 106: 337-345. doi: 10.1016/j.pain.2003.08.001.CrossRefPubMedGoogle Scholar
  45. 45.
    Glasgow RE, Lichtenstein E, Marcus AC. Why don’t we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. Am J Pub Health. 2003; 93(8): 1261-1267.CrossRefGoogle Scholar
  46. 46.
    Glasgow RE, Bull SS, Gillette C, Klesges LM, Dzewaltowski DA. Behavior change intervention research in health care settings: a review of recent reports with emphasis on external validity. Am J Prev Med. 2002; 23: 62-69.CrossRefPubMedGoogle Scholar
  47. 47.
    Taylor ML. The impact of the “business” of pain medicine on patient care. Pain Med. 2011; 12: 763-772.CrossRefPubMedGoogle Scholar
  48. 48.
    Green CR, Wheeler JRC, Marchant B, LaPorte F, Guerrero E. Analysis of the physician variable in pain management. Pain Med. 2001; 2: 17-327.CrossRefGoogle Scholar
  49. 49.
    Glasgow RE, Emmons KM. How can we increase translation of research into practice? Annu Rev Public Health. 2007; 281: 413-433.CrossRefGoogle Scholar
  50. 50.
    Revicki DA, Chen WH, Harnam N, et al. Development and psychometric analysis of the PROMIS pain behavior item bank. Pain. 2009; 146: 125-169. doi: 10.1016/j.pain.2009.07.029.CrossRefGoogle Scholar
  51. 51.
    Ritzwoller DP, Sukhanova A, Gaglio B, Glasgow RE. Costing behavioral interventions: a practical guide to enhance translation. Ann Behav Med. 2009; 37: 218-227. doi: 10.1007/s12160-009-9088-5.CrossRefPubMedGoogle Scholar
  52. 52.
    DeBar LL, Kindler L, Keefe FJ, et al. A primary care-based interdisciplinary team approach to the treatment of chronic pain utilizing a pragmatic clinical trials framework. Transl Behav Med. 2012; 2: 523-530. doi: 10.1007/s13142-012-0163-2.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kessler R, Glasgow RE. A proposal to speed translation of healthcare research into practice: dramatic change is needed. Am J Prev Med. 2011; 40(6): 637-644. doi: 10.1016/j.amepre.2011.02.023.CrossRefPubMedGoogle Scholar
  54. 54.
    Upshur C, Luckmann RS, Savagueau JS. Primary care provider concerns about management of chronic pain in community clinic populations. J Gen Intern Med. 2006; 21: 652-655. doi: 10.1111/j.1525-1497.2006.00412.x.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cohen DJ, Crabtree BF, Etz RS, et al. Fidelity verses flexibility: translating evidence based research into practice. Am J Prev Med. 2008; 35(5S): S381-S389. doi: 10.1016/j.amepre.2008.08.005.CrossRefPubMedGoogle Scholar
  56. 56.
    Gallagher RM. Re-organization of pain care: neuroplasticity to health system plasticity. Pain Med. 2011; 12: 1-2. doi: 10.1111/j.1526-4637.2010.01033.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Dumas JE, Lynch AM, Laughlin JE, Phillips-Smith E, Prinz RJ. Promoting intervention fidelity. Conceptual issues, methods, and preliminary results from the EARLY ALLIANCE prevention trial. Am J Prev Med. 2001; 20: 38-47.CrossRefPubMedGoogle Scholar
  58. 58.
    Jamison RN, Gracely RH, Raymond SA, et al. Comparative study of electronic vs. paper VAS ratings: a randomized, crossover trial using healthy volunteers. Pain. 2002; 99: 341-347.CrossRefPubMedGoogle Scholar
  59. 59.
    Junker U, Freynhagen R, Langler K, et al. Paper versus electronic scales for pain assessment: a prospective, randomized, cross-over validation study with 200 chronic pain patients. Curr Med Res Opin. 2008; 24(6): 1797-1806. doi: 10.1185/03007990802121059.CrossRefPubMedGoogle Scholar
  60. 60.
    Glasgow RE, Chambers D. Developing robust, sustainable, implementation systems using rigorous, rapid and relevant science. Clin Transl Sci. 2012; 5: 48-55. doi: 10.1111/j.1752-8062.2011.00383.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Keefe FJ, Somers TJ, Williams DA, Smith SJ. Assessment of pain behaviors. In: Turk DC, Melzack R, eds. Handbook of Pain Assessment. New York, NY: The Guilford Press; 2011: 134-150.Google Scholar
  62. 62.
    Keefe F, Block A. Development of an observational method for assessing pain behavior in chronic low back pain patients. Behav Ther. 1982; 13: 363-375.CrossRefGoogle Scholar
  63. 63.
    McDaniel LK, Anderson KO, Bradley LA, et al. Development of an observation method for assessing pain behavior in rheumatoid arthritis patients. Pain. 1986; 24: 165-184.CrossRefPubMedGoogle Scholar
  64. 64.
    Richards JS, Nepomuceno C, Riles M, Suer Z. Assessing pain behavior: the UAB Pain Behavior Scale. Pain. 1982; 14: 393-398.CrossRefPubMedGoogle Scholar
  65. 65.
    Feuerstein M, Greenwald M, Gamache M, Papciak A, Cook E. The pain behavior scale: modification and validation for outpatient use. J Psychopathol Behav Assess. 1985; 7: 301-315.CrossRefGoogle Scholar
  66. 66.
    Gramling SE, Elliot TR. Efficient pain assessment in clinical settings. Behav Res Ther. 1992; 30: 71-73.CrossRefPubMedGoogle Scholar
  67. 67.
    Monina E, Falzetti G, Firetto V, Mariani L, Caputi CA. Behavioural evaluation in patients affected by chronic pain: a preliminary study. J Headache Pain. 2006; 7: 395-402. doi: 10.1007/s10194-006-0324-0.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Labus JS, Keefe FJ, Jensen MP. Self-reports of pain intensity and direct observations of pain behavior: when are they correlated? Pain. 2003; 102: 109-124. doi: 10.1016/S0304-3959(02)00354-8.CrossRefPubMedGoogle Scholar
  69. 69.
    Borsook D, Maleki N, Becerra L, McEwen B. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron. 2012; 73: 219-234. doi: 10.1016/j.neuron.2012.01.001.CrossRefPubMedGoogle Scholar
  70. 70.
    Vachon-Presseau E, Roy M, Martel MO, et al. The stress model of chronic pain: evidence from basal cortisol and hippocampal structure and function in humans. Brain. 2013; 136: 815-827. doi: 10.1093/brain/aws371.CrossRefPubMedGoogle Scholar
  71. 71.
    Flor H, Turk DC, Birbaumer N. Assessment of stress-related psychophysiological reactions in chronic back pain patients. J Consult Clin Psych. 1985; 53: 354-364.CrossRefGoogle Scholar
  72. 72.
    Charo LF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006; 354: 610-621. doi: 10.1056/NEJMra052723.CrossRefPubMedGoogle Scholar
  73. 73.
    Dawes JM, McMahon SB. Chemokines as peripheral pain mediators and modulators. Neurosci Lett. 2013; 17: 1-8. doi: 10.1016/j.neulet.2013.10.004.CrossRefGoogle Scholar
  74. 74.
    Dawes JM, Calvo M, Perkins JR, et al. CXCL5 mediates UVB irradiation-induced pain. Sci Transl Med. 2011; 3(90): 90ra60. doi: 10.1126/scitranslmed.3002193.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010; 229: 26-50. doi: 10.1016/j.jneuroim.2010.08.013.CrossRefPubMedGoogle Scholar
  76. 76.
    Lenz M, Uceyler N, Frettloh J, et al. Local cytokine changes in complex regional pain syndrome type I (CRPS I) resolve after 6 months. Pain. 2013; 154(10): 2142-2149. doi: 10.1016/j.pain.2013.06.039.CrossRefPubMedGoogle Scholar
  77. 77.
    Tennant F, Hermann L. Normalization of serum cortisol concentration with opioid treatment of severe chronic pain. Pain Med. 2002; 3(2): 132-134.CrossRefPubMedGoogle Scholar
  78. 78.
    Ozyuvaci E, Alnnigenis NY, Altan A. The effect of transdermal fentanyl treatment on serum cortisol concentrations in patients with non-cancer pain. J Pain Symptom Manag. 2004; 28(3): 277-281. doi: 10.1016/j.jpainsymman.2003.11.004.CrossRefGoogle Scholar
  79. 79.
    Catley D, Kaell AT, Kirschbaum C, Stone AA. A naturalistic evaluation of cortisol secretion in persons with fibromyalgia and rheumatoid arthritis. Arthritis Care Res. 2000; 13: 51-61.CrossRefPubMedGoogle Scholar
  80. 80.
    McBeth J, Chiu YH, Silman AJ, et al. Hypothalamic-pituitary-adrenal stress axis function and the relationship with chronic widespread pain and its antecedents. Arthritis Res Ther. 2005; 7: R992-R1000. doi: 10.1186/ar1772.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Crofford LJ. The hypothalamic–pituitary–adrenal axis in the pathogenesis of rheumatic diseases. Endocrinol Metab Clin N Am. 2002; 31: 1-13.CrossRefGoogle Scholar
  82. 82.
    Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 2000; 25: 1-35.CrossRefPubMedGoogle Scholar
  83. 83.
    McCain GA, Tilbe KS. Diurnal hormone variation in fibromyalgia syndrome: a comparison with rheumatoid arthritis. J Rheumatol. 1989; 19S: 154-157.Google Scholar
  84. 84.
    Anatchkova MD, Saris-Baglama RN, Kosinski M, Bjorner JB. Development and preliminary testing of a computerized adaptive assessment of chronic pain. J Pain. 2009; 10(9): 932-943. doi: 10.1016/j.jpain.2009.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Fries JF, Bruce B, Cella D. The promise of PROMIS: using item response theory to improve assessment of patient-reported outcomes. Clin Exp Rheumatol. 2005; 23(Suppl 39): S53-S57.PubMedGoogle Scholar
  86. 86.
    Amtmann D, Cook KF, Jensen MP, et al. Development of a PROMIS item bank to measure pain interference. Pain. 2010; 150: 173-182. doi: 10.1016/j.pain.2010.04.025.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Melzack R, Torgerson WS. On the language of pain. Anesthesiology. 1971; 34: 50-59.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Behavioral Medicine 2015

Authors and Affiliations

  1. 1.Department of PsychologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations