Skip to main content

Advertisement

Log in

Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research

  • Essay
  • Published:
Translational Behavioral Medicine

Abstract

Adverse and suboptimal health behaviors and habits are responsible for approximately 40 % of preventable deaths, in addition to their unfavorable effects on quality of life and economics. Our current understanding of human behavior is largely based on static “snapshots” of human behavior, rather than ongoing, dynamic feedback loops of behavior in response to ever-changing biological, social, personal, and environmental states. This paper first discusses how new technologies (i.e., mobile sensors, smartphones, ubiquitous computing, and cloud-enabled processing/computing) and emerging systems modeling techniques enable the development of new, dynamic, and empirical models of human behavior that could facilitate just-in-time adaptive, scalable interventions. The paper then describes concrete steps to the creation of robust dynamic mathematical models of behavior including: (1) establishing “gold standard” measures, (2) the creation of a behavioral ontology for shared language and understanding tools that both enable dynamic theorizing across disciplines, (3) the development of data sharing resources, and (4) facilitating improved sharing of mathematical models and tools to support rapid aggregation of the models. We conclude with the discussion of what might be incorporated into a “knowledge commons,” which could help to bring together these disparate activities into a unified system and structure for organizing knowledge about behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. It is important to note the difference in what is being described as a model. The term “theory” has been defined variously across various disciplines, but is defined here as a formalized set of concepts that organize observations and inferences, and is meant to predict phenomena (41. Graziano, A. and M. Raulin, Research is a process of inquiry. Research methods: a process of inquiry, 4th Edition. Allyn & Bacon, Needham Heights, MA, 2000: p. 28–53. The term “model”, on the other hand, has been used by different disciplines to mean different things. There are conceptual models, conceived of as proposed causal linkages between a set of concepts believed to be related to a specific outcome (42. Eime, R.M., et al., A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act, 2013. 10: p. 98.which is very similar to the definition of theory given here. There are statistical models, such as Structural Equation Models, a family of multivariate statistical techniques that incorporate factor analysis and path analysis (43. Weston, R. and P.A. Gore, A brief guide to structural equation modeling. The Counseling Psychologist, 2006. 34(5): p. 719–751. This paper proposes the development of computational models of behavior.

References

  1. Schroeder SA. Shattuck lecture. We can do better—improving the health of the American people. New England Journal of Medicine. 2007; 357(12): 1221-1228.

    Article  CAS  PubMed  Google Scholar 

  2. Mokdad AH et al. Correction: actual causes of death in the United States, 2000. JAMA. 2005; 293(3): 293-298.

    CAS  PubMed  Google Scholar 

  3. Mokdad AH et al. Actual causes of death in the United States, 2000. JAMA, The Journal of the American Medical Association. 2004; 291(10): 1238-1245.

    Article  PubMed  Google Scholar 

  4. Keeney RL. Personal decisions are the leading cause of death, in Operations Research. 2008. p. 1335 + .

  5. Waters E et al. Interventions for preventing obesity in children. Cochrane Database of Systematic Reviews. 2011. doi:10.1002/14651858.CD001871.pub3.

    PubMed  Google Scholar 

  6. Shaw KA et al. Exercise for overweight or obesity. Cochrane Database of Systematic Reviews. 2006. doi:10.1002/14651858.CD003817.pub3.

    Google Scholar 

  7. Stead Lindsay F, Lancaster T. Group behaviour therapy programmes for smoking cessation. Cochrane Database of Systematic Reviews. 2005. doi:10.1002/14651858.CD001007.pub2.

    Google Scholar 

  8. Niederdeppe J, Farrelly MC, HavilandML. Confirming “Truth”: more evidence of a successful tobacco countermarketing campaign in Florida. Journal Information. 2004; 94(2).

  9. Grimshaw G, Stanton A. Tobacco cessation interventions for young people. Cochrane Database of Systematic Reviews. 2006. doi:10.1002/14651858.CD003289.pub4.

    PubMed  Google Scholar 

  10. Stamatakis KA et al. Where is obesity prevention on the map?: Distribution and predictors of local health department prevention activities in relation to county-level obesity prevalence in the United States. Journal of Public Health Management and Practice. 2012; 18(5): 402-411.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Spruijt-Metz D. Etiology, treatment, and prevention of obesity in childhood and adolescence: a decade in review. Journal of Research on Adolescence. 2011; 21(1): 129-152.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Spring B et al. Healthy apps: mobile devices for continuous monitoring and intervention. IEEE Pulse. 2013; 4(6): 34-40.

    Article  PubMed  Google Scholar 

  13. Nilsen WJ, Pavel M. Moving behavioral theories into the 21st century. IEEE Pulse. 2013; 4(5): 25-28.

    Article  PubMed  Google Scholar 

  14. Riley WT et al. Health behavior models in the age of mobile interventions: are our theories up to the task? Translational Behavioral Medicine. 2011; 1(1): 53-71.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rimer B, Glanz K. Theory at a glance: a guide for health promotion practice. Washington, DC: National Institutes of Health, Editor; 2005: 1-64.

    Google Scholar 

  16. Wood A et al. Context-aware wireless sensor networks for assisted living and residential monitoring. IEEE Network. 2008; 22(4): 26-33.

    Article  Google Scholar 

  17. Dickerson R, Gorlin E, Stankovic J. Empath: continuous emotional health monitoring system for major depression, in Wireless Health 2011. 2011: San Diego.

  18. Annavaram M. et al. Multimodal sensing for pediatric obesity applications. in UrbanSense08. 2008. Raleigh.

  19. Li M et al. Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010; 18(4): 369-380.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dunton GF et al. Investigating children’s physical activity and sedentary behavior using ecological momentary assessment with mobile phones. Obesity (Silver Spring). 2011; 19(6): 1205-1212.

    Article  Google Scholar 

  21. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annual Review of Clinical Psychology. 2008; 4: 1-32.

    Article  PubMed  Google Scholar 

  22. Dockray S et al. A comparison of affect ratings obtained with ecological momentary assessment and the day reconstruction method. Social Indicators Research. 2010; 99(2): 269-283.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rivera DE, Jimison HB. Systems modeling of behavior change: two illustrations from optimized interventions for improved health outcomes. IEEE Pulse. 2013; 4(6): 41-47.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Saranummi N et al. Moving the science of behavioral change into the 21st century. IEEE Pulse. 2013; 4(5): 23-24.

    Article  Google Scholar 

  25. Rodgers JL. The epistemology of mathematical and statistical modeling: a quiet methodological revolution. American Psychologist. 2010; 65(1): 1.

    Article  PubMed  Google Scholar 

  26. Millikan RG. What is behavior? in the society for the philosophy of psychology, annual meeting, Toronto. 1987.

  27. Lorenz, K., What is behavior? Species of mind: the philosophy and biology of cognitive ethology. 1999: p. 39.

  28. Tawney G. What is behavior? The Journal of Philosophy Psychology and Scientific Methods. 1915; 12(2): 29-32.

    Article  Google Scholar 

  29. Kattsoff L. What is behavior? Philosophy and phenomenological research. 1948; p. 98–102.

  30. Tuomisto MT, Parkkinen L. Defining behavior and environment interactions: translating and developing an experimental and applied behavior-analytic vocabulary in and to the national language. 2012; 97(3): p. 347–55.

  31. Glass TA, McAtee MJ. Behavioral science at the crossroads in public health: extending horizons, envisioning the future. Social Science and Medicine. 2006; 62(7): 1650-1671.

    Article  PubMed  Google Scholar 

  32. Estrin D, Sim I. Open mHealth architecture: an engine for health care innovation. Science. 2010; 330(6005): 759.

    Article  CAS  PubMed  Google Scholar 

  33. Ramanathan, N., et al. Ohmage: an open mobile system for activity and experience sampling. 2012. IEEE.

  34. Jaimes LG, Llofriu M, Raij A. A stress-free life: just-in-time interventions for stress via real-time forecasting and intervention adaptation. in Proceedings of the 9th International Conference on Body Area Networks. 2014. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  35. Duncan M, Badland H, Mummery W. Applying GPS to enhance understanding of transport-related physical activity. Journal of Science and Medicine in Sport. 2009; 12(5): 549-556.

    Article  PubMed  Google Scholar 

  36. Dunton GF. et al. Locations of joint physical activity in parent-child pairs based on accelerometer and gps monitoring. Ann Behav Med. 2012.

  37. Berke EM et al. Objective measurement of sociability and activity: mobile sensing in the community. Annals of Family Medicine. 2011; 9(4): 344-350.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Fergus P et al. Monitoring and measuring physical activity and sedentary behaviour. International Journal of Healthcare Technology and Management. 2012; 13(5): 283-303.

    Article  Google Scholar 

  39. Vathsangam H, Sukhatme G.S. Using phone-based activity monitors to promote physical activity in older adults: a pilot study. in Healthcare Innovation Conference (HIC), 2014 IEEE. 2014. IEEE.

  40. Nahum-Shani I, Hekler E, Spruijt-Metz D. Building health behavior models to guide the development of just-in-time adaptive interventions: a pragmatic framework. Under Review.

  41. Jimison H. et al. Models of cognitive performance based on home monitoring data. Proc. of EMBS’10, 2010.

  42. Kumar S et al. Mobile health technology evaluation: the mHealth evidence workshop. American Journal of Preventive Medicine. 2013; 45(2): 228-236.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Pavel M et al. The role of technology and engineering models in transforming healthcare. IEEE Reviews in Biomedical Engineering. 2013; 6: 156-177.

    Article  PubMed  Google Scholar 

  44. Hekler EB et al. Exploring behavioral markers of long-term physical activity maintenance: a case study of system identification modeling within a behavioral intervention. Health Education & Behavior. 2013; 40(1 suppl): 51S-62S.

    Article  Google Scholar 

  45. Riley WT. et al. The development of a control systems model of social cognitive theory. Under review.

  46. Lich KH. et al. A call to address complexity in prevention science research. Prev Sci, 2012: p. 1–11.

  47. Rivera DE, Pew MD, Collins LM. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction. Drug and Alcohol Dependence. 2007; 88(Suppl 2): S31-S40.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Timms KP. et al. Control systems engineering for understanding and optimizing smoking cessation interventions. in American Control Conference (ACC), 2013. 2013. IEEE.

  49. Deshpande S. et al. A control engineering approach for designing an optimized treatment plan for fibromyalgia. in American Control Conference (ACC), 2011. 2011. IEEE.

  50. Martın CA. et al. A dynamical systems model of social cognitive theory. in Proceedings of the American Control Conference (ACC’14). 2014.

  51. Hammond RA. Complex systems modeling for obesity research. Preventing Chronic Disease. 2009; 6(3): A97.

    PubMed Central  PubMed  Google Scholar 

  52. Hammond RA, Dube L, A systems science perspective and transdisciplinary models for food and nutrition security. Proceedings of the National Academy of Sciences. in press.

  53. Hammond RA, A complex systems approach to understanding and combating the obesity epidemic. 2008: Center on Social and Economic Dynamics.

  54. Hammond RA. et al. A model of food reward learning with dynamic reward exposure. Frontiers in computational neuroscience. 2012. 6.

  55. Chih M-Y et al. Predictive modeling of addiction lapses in a mobile health application. Journal of Substance Abuse Treatment. 2014; 46(1): 29-35.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Dutech A, Scherrer B. Partially observable Markov decision processes. Markov Decision Processes in Artificial Intelligence. 2013; p. 185–228

  57. Li L. et al. A contextual-bandit approach to personalized news article recommendation. in Proceedings of The 19th International Conference On World Wide Web. 2010. ACM.

  58. Bouneffouf D, Bouzeghoub A, Gançarski AL. Exploration/exploitation trade-off in mobile context-aware recommender systems, in AI 2012: Advances in Artificial Intelligence. 2012; Springer. p. 591–601.

  59. Bandura A. Social cognitive theory. Handbook of Theories of Social Psychology. 2011; 1: 349.

    Google Scholar 

  60. Martin CA. et al. A dynamical systems model of social cognitive theory. in American Control Conference (ACC), 2014. 2014. IEEE.

  61. Bandura A. Health promotion from the perspective of social cognitive theory. 2000, Norman Paul, Abraham Charles, Conner Mark (Eds). Understanding and changing health behaviour: from health beliefs to self-regulation. (2000).

  62. Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice Hall; 1986.

    Google Scholar 

  63. Bandura A. Self-efficacy—the exercise of control. New York: W.H. Freeman and Company; 1997.

    Google Scholar 

  64. Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Key Readings in Social Psychology. Baumeister Roy F (Ed). 1999.

  65. Bandura A. Social cognitive theory: an agentic perspective. Annual Review of Psychology. 2001; 52: 1-26.

    Article  CAS  PubMed  Google Scholar 

  66. Martin CA. et al. A dynamical systems model of social cognitive theory. Manuscript Submitted for Publication, 2013.

  67. Riley WT. et al. The development of a control systems model of social cognitive theory. Manuscript Submitted for Publication 2013.

  68. Philips, L.A., E.B. Hekler, and J. Abrams, Beyond context stability: motivational and self-identity mechanisms of exercise Habi. Under review.

  69. Locke EA, Latham GP. Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. American Psychologist. 2002; 57(9): 705.

    Article  PubMed  Google Scholar 

  70. Bandura A. Self-efficacy: the exercise of control. New York: Freeman; 1997.

    Google Scholar 

  71. Adams MA et al. An adaptive physical activity intervention for overweight adults: a randomized controlled trial. PLoS One. 2013; 8(12): e82901.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Vogel AL. et al. Pioneering the transdisciplinary team science approach: lessons learned from national cancer institute grantees. Journal of Translational Medicine Epidemiology. 2014; 2(2).

  73. Hall KD, Hammond RA, Rahmandad H. Dynamic interplay among homeostatic, hedonic, and cognitive feedback circuits regulating body weight. American Journal of Public Health. 2014; 104(7): 1169-1175.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Pirolli P. Seeking answers, making sense, changing lifestyles: cognitive models of human-information interaction, in Proceedings of the 5th Information Interaction in Context Symposium. 2014, ACM: Regensburg, Germany. p. 2–3.

  75. Hekler EB. et al. Mind the theoretical gap: interpreting, using, and developing behavioral theory in HCI research. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2013. ACM.

  76. Rahman MM. et al. Are we there yet?: Feasibility of continuous stress assessment via wireless physiological sensors. in Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. 2014. ACM.

  77. PhenX. PhenX. Consensus measures for phenotypes and exposures. 2013 [cited 2013; The PhenX Toolkit offers a web-based catalog of curated measures for consideration and inclusion in genome-wide association studies (GWAS) and other large-scale genomic research efforts]. Available from: https://www.phenx.org.

  78. Neuroscience Toolbox for cognitive functioning. 2013; Available from: http://www.neuroscienceblueprint.nih.gov/factSheet/toolbox.htm.

  79. PROMIS. PROMIS: Dynamic tools to measure health outcomes from a patient perspective. 2013 [cited 2013; A system of highly reliable, precise measures of patient–reported health status for physical, mental, and social well–being.]. Available from: http://www.nihpromis.org.

  80. Michie S. et al. ABC of Behaviour change theories. 2014

  81. Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation Science. 2011; 6: 42.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Michie S et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine. 2013; 46(1): 81-95.

    Article  PubMed  Google Scholar 

  83. National Institutes of Health. BD2K. 2014; Available from: http://bd2k.nih.gov/-sthash.I1KoZCl6.dpuf

  84. Hovell M, Wahlgren D, Adams M. The logical and empirical basis for the behavioral ecological model. Emerging Theories in Health Promotion Practice and Research. 2009; 2: 347-385.

    Google Scholar 

  85. Haisley E et al. The impact of alternative incentive schemes on completion of health risk assessments. American Journal of Health Promotion. 2012; 26(3): 184-188.

    Article  PubMed  Google Scholar 

  86. VPH-SHARE. VPH (Virtual Physiological Human)-Share Project. 2012 [cited 2012; Available from: http://www.vph-share.eu.

  87. Lenert L et al. A framework for modeling health behavior protocols and their linkage to behavioral theory. Journal of Biomedical Informatics. 2005; 38(4): 270-280.

    Article  PubMed  Google Scholar 

  88. Bickmore TW, Schulman D, Sidner CL. A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. Journal of Biomedical Informatics. 2011; 44(2): 183-197.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Wikpedia. Big Data. 2013; Available from: http://en.wikipedia.org/wiki/Big_data

Download references

Acknowledgments

This project was funded by the National Science Foundation (CISE IIS-1217464)

We would like to thank participants in the workshop that led to this publication: Jaakko Aarnio, Katerina Martin Abello, René van Bavel, Christina Botella, Niels Boye, Célia Boyer, Marientina Gotsis, Loukianos Gatzoulis, Ross Hammond, Jimi Huh, Holly Brugge Jimison, Pamela Kato, Outi Kenttä, Joni Kettunen, Pedrag Klasnja, Heidi Lehtonen, James Lester, Elina Mattila, Teresa Meneu, Robin Mermelstien, Hannu Nieminen, Ana Paiva, Brigitte Piniewski, Andrew Raij, and Petra Wilson.

Conflict of interest

Donna Spruijt-Metz, Eric Hekler, Niilo Saranummi, Stephen Intille, Ilkka Korhonen, Wendy Nilsen, Daniel E. Rivera, Bonnie Spring, Susan Michie, David A. Asch, Alberto Sanna, Vicente Traver Salcedo, Rita Kukakfa, and Misha Pavel have no conflict of interest to report.

Adherence to ethical principles

This paper reflects discussions and documents developed for the International Workshop on New Computationally-Enabled Theoretical Models to Support Health Behavior Change and Maintenance, October 16–17, 2012, Brussels. All materials can be found here http://www.behaviorchange.ca. There were no human subjects involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna Spruijt-Metz MFA, PhD.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spruijt-Metz, D., Hekler, E., Saranummi, N. et al. Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Behav. Med. Pract. Policy Res. 5, 335–346 (2015). https://doi.org/10.1007/s13142-015-0324-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13142-015-0324-1

Keywords

Navigation