Translational Behavioral Medicine

, Volume 4, Issue 3, pp 314–323 | Cite as

Obesity in social media: a mixed methods analysis

  • Wen-ying Sylvia Chou
  • Abby Prestin
  • Stephen Kunath
Original Research


The escalating obesity rate in the USA has made obesity prevention a top public health priority. Recent interventions have tapped into the social media (SM) landscape. To leverage SM in obesity prevention, we must understand user-generated discourse surrounding the topic. This study was conducted to describe SM interactions about weight through a mixed methods analysis. Data were collected across 60 days through SM monitoring services, yielding 2.2 million posts. Data were cleaned and coded through Natural Language Processing (NLP) techniques, yielding popular themes and the most retweeted content. Qualitative analyses of selected posts add insight into the nature of the public dialogue and motivations for participation. Twitter represented the most common channel. Twitter and Facebook were dominated by derogatory and misogynist sentiment, pointing to weight stigmatization, whereas blogs and forums contained more nuanced comments. Other themes included humor, education, and positive sentiment countering weight-based stereotypes. This study documented weight-related attitudes and perceptions. This knowledge will inform public health/obesity prevention practice.


Obesity Weight stigma Cyber aggression Social media Health communication Mixed methods Online social support 


  1. 1.
    Ata RN, Thompson JK. Weight bias in the media: a review of recent research. Obes Facts. 2010; 3: 41-46. doi:10.1016/j.bodyim.2010.10.003.PubMedCrossRefGoogle Scholar
  2. 2.
    Chou WY, Hunt YM, Beckjord EB, Moser RP, Hesse BW. Social media use in the United States: implications for health communication. J Med Internet Res. 2009; 11: e48. doi:10.2196/jmir.1249.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chou WS, Prestin A, Lyons C, Wen K. Web 2.0 for health promotion: reviewing the current evidence. Am J Public Health. 2013; 103(1): e9-e18. doi:10.2105/AJPH.2012.301071.PubMedCrossRefGoogle Scholar
  4. 4.
    Christopherson KM. The positive and negative implications of anonymity in Internet social interactions: “On the Internet, Nobody Knows You’re a Dog. Computers and Human Behavior. 2007; 23(6): 3038-3056. doi:10.1016/j.chb.2006.09.001.CrossRefGoogle Scholar
  5. 5.
    Dickins M, Thomas SL, King B, Lewis S, Holland K. The role of the fatosphere in fat adults’ responses to obesity stigma: a model of empowerment without a focus on weight loss. Qual Health Res. 2011; 21(12): 1679-1691. doi:10.1177/1049732311417728.PubMedCrossRefGoogle Scholar
  6. 6.
    Domoff SE, Hinman NG, Koball AM, et al. The effects of reality television on weight bias: an examination of The Biggest Loser. Obesity. 2012; 20: 993-998. doi:10.1038/oby.2011.378.PubMedCrossRefGoogle Scholar
  7. 7.
    Fikkan JL, Rothblum ED. Is fat a feminist issue? Exploring the gendered nature of weight bias. Sex Roles. 2011; 66: 575-592. doi:10.1007/s11199-011-0022-5.CrossRefGoogle Scholar
  8. 8.
    Fouts G, Burggraf K. Television situation comedies: female weight, male negative comments, and audience reactions. Sex Roles. 2000; 42: 925-932. doi:10.1023/a:1007054618340.CrossRefGoogle Scholar
  9. 9.
    Freis SD, Gurung RAR. A Facebook analysis of helping behavior in online bullying. Psychology of Popular Media Culture. 2013; 2: 11-19. doi:10.1037/a0030239.CrossRefGoogle Scholar
  10. 10.
    Greenberg BS, Eastin M, Hofschire L, Lachlan K, Brownell KD. Portrayals of overweight and obese individuals on commercial television. Am J Public Health. 2003; 93: 1342-1348.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Harrison K. Television viewing, fat stereotyping, body shape standards, and eating disorder symptomatology in grade school children. Commun Res. 2000; 27: 617-640. doi:10.1177/009365000027005003.CrossRefGoogle Scholar
  12. 12.
    Hinduja S, Patchin JW. Bullying, cyberbullying, and suicide. Arch Suicide Res. 2010; 14: 206-221. doi:10.1080/13811118.2010.494133.PubMedCrossRefGoogle Scholar
  13. 13.
    Hussin M, Frazier S, Thompson JK. Fat stigmatization on YouTube: a content analysis. Body Image. 2011; 8: 90-92. doi:10.1016/j.bodyim.2010.10.003.PubMedCrossRefGoogle Scholar
  14. 14.
    Hwang KO, Etchegaray JM, Sciamanna CN, Bernstam EV, Thomas EJ. Structural social support predicts functional social support in an online weight loss programme. Health Expect. 2011. doi:10.1111/j.1369-7625.2011.00759.x.Google Scholar
  15. 15.
    Hwang KO, Ning J, Trickey AW, Sciamanna CN. Website usage and weight loss in a free commercial online weight loss program: retrospective cohort study. J Med Internet Res. 2013; 15: e11. doi:10.2196/jmir.2195.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hwang KO, Ottenbacher AJ, Green AP, et al. Social support in an Internet weight loss community. International Journal of Medical Information. 2010; 79: 5-13. doi:10.1016/j.ijmedinf.2009.10.003.CrossRefGoogle Scholar
  17. 17.
    Hwang KO, Ottenbacher AJ, Lucke JF, et al. Measuring social support for weight loss in an internet weight loss community. J Health Commun. 2011; 16: 198-211. doi:10.1080/10810730.2010.535106.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim S-H, Anne Willis L. Talking about obesity: news framing of who is responsible for causing and fixing the problem. J Health Commun. 2007; 12: 359-376. doi:10.1080/10810730701326051.PubMedCrossRefGoogle Scholar
  19. 19.
    Klein H, Shiffman KS. Thin is “in” and stout is “out”: what animated cartoons tell viewers about body weight. Eat Weight Disord. 2005; 10: 107-116. doi:10.1007/BF03327532.PubMedCrossRefGoogle Scholar
  20. 20.
    Lapidot-Lefler N, Barak A. Effects of anonymity, invisibility, and lack of eye-contact on toxic online disinhibition. Computers and Human Behavior. 2012; 28: 434-443. doi:10.1016/j.chb.2011.10.014.CrossRefGoogle Scholar
  21. 21.
    Latner JD, Rosewall JK, Simmonds MB. Childhood obesity stigma: association with television, videogame, and magazine exposure. Body Image. 2007; 4: 147-155. doi:10.1016/j.bodyim.2007.03.002.PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis S, Thomas SL, Blood RW, Castle D, Hyde J, Komesaroff PA. ‘I’m searching for solutions’: why are obese individuals turning to the Internet for help and support with ‘being fat’? Health Expect. 2011; 14: 339-350. doi:10.1111/j.1369-7625.2010.00644.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Libbey HP, Story MT, Neumark-Sztainer DR, Boutelle KN. Teasing, disordered eating behaviors, and psychological morbidities among overweight adolescents. Obesity. 2008; 16(S2): S24-S29. doi:10.1038/oby.2008.455.PubMedCrossRefGoogle Scholar
  24. 24.
    Madden M (2012) Privacy management on social media sites. Washington, DC: Pew Research Center; 2012. Available at: Accessed July 1, 2013.
  25. 25.
    Major LH. Break it to me harshly: the effects of intersecting news frames in lung cancer and obesity coverage. J Health Commun. 2009; 14: 174-188. doi:10.1080/10810730802659939.PubMedCrossRefGoogle Scholar
  26. 26.
    National Center for Health Statistics (2011) Health, United States, 2011: with special feature on socioeconomic status and health. Hyattsville (MD): National Center for Health Statistics (US); 2012. Available at: Accessed July 5, 2013.
  27. 27.
    O’Sullivan PB, Flanagin AJ. Reconceptualizing “flaming” and other problematic messages. New Media & Society. 2003; 5: 69-94. doi:10.1177/1461444803005001908.CrossRefGoogle Scholar
  28. 28.
    Pagoto SL, Schneider KL, Oleski J, Smith B, Bauman M (2013) The adoption and spread of a core-strengthening exercise through an online social network. Journal of Physical Activity and Health, (online ahead of print).Google Scholar
  29. 29.
    Poirier J, Cobb NK. Social influence as a driver of engagement in a web-based health intervention. J Med Internet Res. 2012; 14(1): e36. doi:10.2196/jmir.1957.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Puhl R, Brownell KD. Bias, discrimination, and obesity. Obes Res. 2001; 9: 788-805. doi:10.1038/oby.2001.108.PubMedCrossRefGoogle Scholar
  31. 31.
    Puhl RM, Brownell KD. Psychosocial origins of obesity stigma: toward changing a powerful and pervasive bias. Obes Rev. 2003; 4: 213-227. doi:10.1046/j.1467-789X.2003.00122.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Puhl RM, Brownell KD. Confronting and coping with weight stigma: an investigation of overweight and obese adults. Obesity. 2006; 14(10): 1802-1815. doi:10.1038/oby.2006.208.PubMedCrossRefGoogle Scholar
  33. 33.
    Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity. 2009; 17(5): 941-964. doi:10.1038/oby.2008.636.PubMedCrossRefGoogle Scholar
  34. 34.
    Puhl RM, Heuer CA. Obesity stigma: important considerations for public health. Am J Public Health. 2010; 100(6): 1019-1028. doi:10.2105/AJPH.2009.159491.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Puhl RM, Luedicke J, Peterson LJ. Public reactions to obesity-related health campaigns. Am J Prev Med. 2013; 45: 36-48. doi:10.1016/j.amepre.2013.02.010.PubMedCrossRefGoogle Scholar
  36. 36.
    Puhl RM, Peterson JL, DePierre JA, Luedicke J. Headless, hungry, and unhealthy: a video content analysis of obese persons portrayed in online news. J Health Commun. 2013; 18: 686-702. doi:10.1080/10810730.2012.743631.PubMedCrossRefGoogle Scholar
  37. 37.
    Rudman LA, Feinberg J, Fairchild K. Minority members’ implicit attitudes: automatic ingroup bias as a function of group status. Soc Cogn. 2002; 20: 294-320. doi:10.1521/soco. Scholar
  38. 38.
    Smith N, Wickes R, Underwood M. Managing a marginalised identity in pro-anorexia and fat acceptance cybercommunities. J Sociol. 2013. doi:10.1177/1440783313486220.Google Scholar
  39. 39.
    Sonneville KR, Calzo JP, Horton NJ, Haines J, Austin SB, Field AE. Body satisfaction, weight gain and binge eating among overweight adolescent girls. Int J Obes (Lond). 2012; 36(7): 944-949. doi:10.1038/ijo.2012.68.CrossRefGoogle Scholar
  40. 40.
    Sproull L, Kiesler S. Connections: New Ways of Working in the Networked Organization. Cambridge, MA: MIT Press; 1992.Google Scholar
  41. 41.
    Storch E, Larson M, Ehrenreich-May J, Jones AE, Renno A, et al. Peer victimization in youth with autism spectrum disorders and co-occurring anxiety: relations with psychopathology and loneliness. J Dev Phys Disabil. 2012. doi:10.1007/s10882-012-9290-4.Google Scholar
  42. 42.
    Suisman JL, Slane JD, Burt SA, Klump KL. Negative affect as a mediator of the relationship between weight-based teasing and binge eating in adolescent girls. Eat Behav. 2008; 9(4): 493-496. doi:10.1016/j.eatbeh.2008.04.001.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Suler J. The online disinhibition effect. Cyberpsychology and Behavior. 2004; 7: 321-326. doi:10.1089/1094931041291295.PubMedCrossRefGoogle Scholar
  44. 44.
    Thomas S, Hyde J, Komesaroff P. “Cheapening the struggle”: obese people’s attitudes toward The Biggest Loser. Obes Manag. 2007; 3: 210-215. doi:10.1089/obe.2007.0065.CrossRefGoogle Scholar
  45. 45.
    Twitter (2012) Twitter turns six. Twitter Blog. Available at: Accessed July 5, 2012.
  46. 46.
    Vartanian LR. Disgust and perceived control in attitudes toward obese people. Int J Obes (Lond). 2010; 34: 1302-1307. doi:10.1038/ijo.2010.45.CrossRefGoogle Scholar
  47. 47.
    Wang SS, Brownell KD, Wadden TA. The influence of the stigma of obesity on overweight individuals. International Journal of Obesity Related Metabolic Disorders. 2004; 28(10): 1333-1337.PubMedCrossRefGoogle Scholar
  48. 48.
    Ybarra ML, Mitchell KJ. Youth engaging in online harassment: associations with caregiver–child relationships, Internet use, and personal characteristics. J Adolesc. 2004; 27: 319-336. doi:10.1016/j.adolescence.2004.03.007.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoo JH. No clear winner: effects of The Biggest Loser on the stigmatization of obese persons. Health Commun. 2013; 28: 294-303. doi:10.1080/10410236.2012.684143.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoo JH, Kim J. Obesity in the new media: a content analysis of obesity videos on YouTube. Health Commun. 2012; 27: 86-97. doi:10.1080/10410236.2011.569003.PubMedCrossRefGoogle Scholar
  51. 51.
    Zimbardo PG. The human choice: individuation, reason, and order versus deindividuation, impulse, and chaos. Nebr Symp Motiv. 1969; 17: 237-307.Google Scholar

Copyright information

© Society of Behavioral Medicine 2014

Authors and Affiliations

  • Wen-ying Sylvia Chou
    • 1
  • Abby Prestin
    • 2
  • Stephen Kunath
    • 3
  1. 1.Health Communication and Informatics Research Branch, Behavioral Research Program, Division of Cancer Control and Population SciencesNational Cancer Institute, National Institutes of HealthRockvilleUSA
  2. 2.Health Communication and Informatics Research Branch, Behavioral Research Program, Division of Cancer Control and Population SciencesNational Cancer Institute, National Institutes of HealthRockvilleUSA
  3. 3.Department of LinguisticsGeorgetown UniversityRockvilleUSA

Personalised recommendations