Skip to main content

mHealth approaches to child obesity prevention: successes, unique challenges, and next directions

Abstract

Childhood obesity continues to be a significant public health issue. mHealth systems offer state-of-the-art approaches to intervention design, delivery, and diffusion of treatment and prevention efforts. Benefits include cost effectiveness, potential for real-time data collection, feedback capability, minimized participant burden, relevance to multiple types of populations, and increased dissemination capability. However, these advantages are coupled with unique challenges. This commentary discusses challenges with using mHealth strategies for child obesity prevention, such as lack of scientific evidence base describing effectiveness of commercially available applications; relatively slower speed of technology development in academic research settings as compared with industry; data security, and patient privacy; potentially adverse consequences of increased sedentary screen time, and decreased focused attention due to technology use. Implications for researchers include development of more nuanced measures of screen time and other technology-related activities, and partnering with industry for developing healthier technologies. Implications for health practitioners include monitoring, assessing, and providing feedback to child obesity program designers about users' data transfer issues, perceived security and privacy, sedentary behavior, focused attention, and maintenance of behavior change. Implications for policy makers include regulation of claims and quality of apps (especially those aimed at children), supporting standardized data encryption and secure open architecture, and resources for research–industry partnerships that improve the look and feel of technology. Partnerships between academia and industry may promote solutions, as discussed in this commentary.

This is a preview of subscription content, access via your institution.

References

  1. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. 2010;303(3): 242-249.

    Article  CAS  PubMed  Google Scholar 

  2. Bell LM, Curran JA, Byrne S, et al. High incidence of obesity co-morbidities in young children: a cross-sectional study. J Paediatr Child Health. 2011;47(12): 911-917.

    Article  PubMed  Google Scholar 

  3. Obesity WHTFoC. Solving the Problem of Childhood Obesity Within a Generation. May 2010; http://www.letsmove.gov/sites/letsmove.gov/files/TaskForce_on_Childhood_Obesity_May2010_FullReport.pdf.

  4. Spruijt-Metz D. Etiology, treatment, and prevention of obesity in childhood and adolescence: a decade in review. J Res Adolesc. 2011;21(1): 129-152.

    Article  PubMed  Google Scholar 

  5. Must A, Parisi SM. Sedentary behavior and sleep: paradoxical effects in association with childhood obesity. Int J Obes. 2009;33: S82-S86.

    Article  Google Scholar 

  6. Fisher EB, Fitzgibbon ML, Glasgow RE, et al. Behavior matters. Am J Prev Med. 2011;40(5): E15-E30.

    Article  PubMed  Google Scholar 

  7. Waters E, de Silva-Sanigorski A, Hall BJ, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2011; (12).

  8. Summerbell CD, Waters E, Edmunds LD, Kelly S, Brown T, Campbell KJ. Interventions for preventing obesity in children. Cochrane Database Syst Rev. 2005; (3).

  9. Flynn MAT, McNeil DA, Maloff B, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006;7: 7-66.

    Article  PubMed  Google Scholar 

  10. Nguyen B, Kornman KP, Baur LA. A review of electronic interventions for prevention and treatment of overweight and obesity in young people. Obes Rev. 2011;12(501): e298-e314.

    Article  CAS  PubMed  Google Scholar 

  11. Amanda Lenhart KP, Aaron Smith, Kathryn Zickuhr. Social Media and Young Adults. Pew Research Center. Feb 3, 2010.

  12. Klasnja P, Pratt W. Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform. 2012;45(1): 184-198. doi:10.1016/j.jbi.2011.08.017.

    Article  PubMed  Google Scholar 

  13. Krishna S, Boren SA, Balas EA. Healthcare via cell phones: a systematic review. Telemed J E-Health. 2009;15(3): 231-240.

    Article  PubMed  Google Scholar 

  14. Riley WT, Rivera DE, Atienza AA, Nilsen W, Allison SM, Mermelstein R. Health behavior models in the age of mobile interventions: are our theories up to the task? Transl Behav Med. 2011;1.

  15. Tate DF. Application of innovative technologies in the prevention and treatment of overweight in children and adolescents. In: Jelalian E, Steele R, eds. Handbook of Childhood and Adolescent Obesity. New York: Springer; 2008: 378-404.

    Google Scholar 

  16. Gance-Cleveland B, Gilbert LH, Kopanos T, Gilbert KC. Evaluation of technology to identify and assess overweight children and adolescents. J Specialists Pediatr Nurs. 2010;15(1): 72-83.

    Article  Google Scholar 

  17. Dunton GF, Atienza AA. The Need for time-intensive information in healthful eating and physical activity research: a timely topic. J Am Diet Assoc. 2009;109(1): 30-35.

    Article  PubMed  Google Scholar 

  18. Fox S, Duggan M. Mobile health 2012. Pew Internet & American Life Project. Retrieved on: Nov 8, 2012.

  19. Shapiro JR, Bauer S, Hamer RM, Kordy H, Ward D, Bulik CM. Use of text messaging for monitoring sugar-sweetened beverages, physical activity, and screen time in children: a pilot study. J Nutr Educ Behav. 2008;40(6): 385-391.

    Article  PubMed  Google Scholar 

  20. Khaylis A, Yiaslas T, Bergstrom J, Gore-Felton C. A review of efficacious technology-based weight-loss interventions: five key components. Telemed J E-Health. 2010;16(9): 931-938.

    Article  PubMed  Google Scholar 

  21. Burke LE, Styn MA, Sereika SM, et al. Using mHealth technology to enhance self-monitoring for weight loss: a randomized trial. Am J Prev Med. Jul 2012; 43(1).

  22. Barlow SE, Dietz WH. Obesity evaluation and treatment: expert committee recommendations. Pediatrics. Sep 1998;102(3). doi:10.1542/peds.102.3.e29.

  23. Dietz WH, Gortmaker SL. Preventing obesity in children and adolescents. Annu Rev Public Health. 2001;22: 337-353. doi:10.1146/annurev.publhealth.22.1.337.

    Article  CAS  PubMed  Google Scholar 

  24. Beck RC. Motivation: Theories and Principles. 5th ed. Upper Saddle River: Prentice Hall;2004.

    Google Scholar 

  25. Jordan-Marsh M. Health Technology Literacy: A Transdisciplinary Framework for Consumer-Oriented Practice. Sudbury, MA: Jones & Bartlett Learning; 2011.

    Google Scholar 

  26. Collins LM, Murphy SA, Strecher V. The multiphase optimization strategy (MOST) and the sequential multiple assignment randomized trial (SMART)—new methods for more potent eHealth interventions. Am J Prev Med. 2007;32(5): S112-S118.

    Article  PubMed  Google Scholar 

  27. Noar SM, Benac CN, Harris MS. Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. Psychol Bull. 2007;133(4): 673-693.

    Article  PubMed  Google Scholar 

  28. Woolford SJ, Barr KLC, Derry HA, et al. OMG do not say LOL: obese adolescents' perspectives on the content of text messages to enhance weight loss efforts. Obesity. 2011;19(12): 2382-2387. doi:10.1038/oby.2011.266.

    Article  PubMed  Google Scholar 

  29. Nigg CR. Technology's influence on physical activity and exercise science: the present and the future. Psychol Sport Exerc. 2003;4(1): 57-65.

    Article  Google Scholar 

  30. Hurling R, Fairley BW, Dias MB. Internet-based exercise intervention systems: are more interactive designs better? Psychol Health. Dec 2006;21(6).

  31. Collins LM, Murphy SA, Bierman KL. A conceptual framework for adaptive preventive interventions. Prev Sci. 2004;5(3): 185-196.

    Article  PubMed  Google Scholar 

  32. Rabipour S, Raz A. Training the brain: fact and fad in cognitive and behavioral remediation. Brain Cogn. 2012; 79(2): 159-179.

    Article  PubMed  Google Scholar 

  33. Woolford SJ, Clark SJ, Strecher VJ, Resnicow K. Tailored mobile phone text messages as an adjunct to obesity treatment for adolescents. J Telemed Telecare. 2010;16(8): 458-461.

    Article  PubMed  Google Scholar 

  34. Krukowski RA, Harvey-Berino J, Ashikaga T, Thomas CS, Micco N. Internet-based weight control: the relationship between web features and weight loss. Telemed J E-Health. 2008;14(8): 775-782.

    Article  PubMed  Google Scholar 

  35. Irvine L, Falconer DW, Jones C, Ricketts IW, Williams B, Crombie IK. Can text messages reach the parts other process measures cannot reach: an evaluation of a behavior change intervention delivered by mobile phone? Plos One. 2012;7(12). doi:10.1371/journal.pone.0052621.

  36. Lenfant C. Shattuck Lecture: clinical research to clinical practice—lost in translation? N Engl J Med. Aug 28 2003;349(9).

  37. Anderson J, Rainie L. The Future of Apps and Web. Pew Internet & American Life Project.

  38. Whittaker R. Issues in mHealth: findings from key informant interviews. J Med Internet Res. Sep-Oct 2012;14(5).

  39. Chen G, Yan B, Kotz D, Berke E. MPCS: mobile-phone based patient compliance system for chronic illness care. http://www.westwirelesshealth.org.

  40. Luxton DD, Kayl RA, Mishkind MC. mHealth data security: the need for HIPAA-compliant standardization. Telemed E-Health. 2012;18(4): 284-288.

    Article  Google Scholar 

  41. American Telemedicine Association (October, 2009). Practice Guidelines for Videoconferencing-Based Telemental Health. Available at http://www.americantelemed.org/docs/default-source/standards/practice-guidelines-for-videoconferencing-based-telemental-health.pdf?sfvrsn=6 (Retrieved on April 15, 2013).

  42. U.S. Food and Drug Administration. Draft Guidance for Industry and Food and Drug Administration Staff—Mobile Medical Applications. Retrieved April 14, 2013, from http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm263280.htm#5. July 21, 2011.

  43. INSTITUTE NMT. Connecting the mobile health ecosystem. December, 2012; http://www.mhealthsummit.org/program-details/nih-mhealth-training-institute. Accessed November, 2012.

  44. Graham JW, Cumsille PE, Elek-Fisk E. Methods for handling missing data.

  45. Schwartz JE, Stone AA. Strategies for analyzing ecological momentary assessment data. Health Psychol. Jan 1998;17(1).

  46. Stokols D, Hall KL, Taylor BK, Moser RP. The science of team science—overview of the field and introduction to the supplement. Am J Prev Med. Aug 2008;35(2).

  47. Anderson JW, Konz EC, Frederich RC, Wood CL. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001;74(5): 579-584.

    CAS  PubMed  Google Scholar 

  48. Brownell KD, Jeffery RW. Improving long-term weight loss: pushing the limits of treatment. Behav Ther. 1987;18(4): 353-374. doi:10.1016/S0005-7894(87)80004-7.

    Article  Google Scholar 

  49. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(1): 222S-225S.

    CAS  PubMed  Google Scholar 

  50. Burke LE, Styn MA, Sereika SM, Conroy MB, Ye L, Glanz K, . . . Ewing LJ. Using mHealth technology to enhance self-monitoring for weight loss: a randomized trial. Am J Prev Med. 2012;43(1). doi:10.1016/j.amepre.2012.03.016.

  51. Wadden TA, West DS, Delahanty LM, et al. The look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity. 2006;14(5): 737-752.

    Article  PubMed  Google Scholar 

  52. Epstein LH, Valoski A, Wing RR, McCurley J. Ten-year outcomes of behavioral family-based treatment for childhood obesity. Heal Psychol. 1994; 13(5): 373-383. doi:10.1037/0278-6133.13.5.373.

    Article  CAS  Google Scholar 

  53. Golan M, Crow S. Targeting parents exclusively in the treatment of childhood obesity: long-term results. Obes Res. 2004;12(2): 357-361. doi:10.1038/oby.2004.45.

    Article  PubMed  Google Scholar 

  54. Kitzman-Ulrich H, Wilson DK, St George SM, Lawman H, Segal M, Fairchild A. The integration of a family systems approach for understanding youth obesity, physical activity, and dietary programs. Clin Child Fam Psychol Rev. 2010;13(3): 231-253. doi:10.1007/s10567-010-0073-0.

    Article  PubMed  Google Scholar 

  55. Kitzmann KM, Beech BM. Family-based interventions for pediatric obesity: methodological and conceptual challenges from family psychology. J Fam Psychol. 2006;20(2): 175-189. doi:10.1037/0893-3200.20.2.175.

    Article  PubMed  Google Scholar 

  56. Barlow SE, Ohlemeyer CL. Parent reasons for nonreturn to a pediatric weight management program. Clin Pediatr. 2006;45(4): 355-360. doi:10.1177/000992280604500408.

    Article  Google Scholar 

  57. Goldfield GS, Epstein LH, Kilanowski CK, Paluch RA, Kogut-Bossler B. Cost-effectiveness of group and mixed family-based treatment for childhood obesity. Int J Obes. 2001;25(12): 1843-1849. doi:10.1038/sj.ijo.0801838.

    Article  CAS  Google Scholar 

  58. Sanchez J, Salinas A, Saenz M. Mobile game-based methodology for science learning. Human Computer Interaction: HCI Applications and Services Lecture Notes in Computer Science. 2007;4553: 322-331.

  59. Rossi WC, Reynolds W, Nelson RM. Child assent and parental permission in pediatric research. Theor Med Bioeth. 2003;24(2): 131-148. doi:10.1023/a:1024690712019.

    Article  PubMed  Google Scholar 

  60. Oudshoorn N. How places matter: telecare technologies and the changing spatial dimensions of healthcare. Soc Stud Sci. 2012;42(1): 121-142. doi:10.1177/0306312711431817.

    Article  PubMed  Google Scholar 

  61. Zickuhr K,& Smith A. The Power of Mobile. Pew Research Center's Internet & American Life Project, Washington, DC (Apr 13, 2012). http://www.pewinternet.org/Reports/2012/Digital-differences/Main-Report/The-power-of-mobile.aspx, Accessed April 8, 2013.

  62. Wang Y, Beydoun MA. The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29: 6-28. doi:10.1093/epirev/mxm007.

    Article  CAS  PubMed  Google Scholar 

  63. Hurling R, Catt M, Boni MD, et al. Using internet and mobile phone technology to deliver an automated physical activity program: randomized controlled trial. J Med Internet Res. 2007; 9(2).

  64. Zhu FQ, Mariappan A, Boushey CJ, et al. Technology-Assisted Dietary Assessment. Paper presented at: Conference on Computational Imaging VI; Jan 28-29, 2008;San Jose, CA.

  65. McKetta S, Rich M. The fault, dear viewer, lies not in the screens, but in ourselves: relationships between screen media and childhood overweight/obesity. Pediatr Clin N Am. 2011; 58(6):1493–1508.

    Article  Google Scholar 

  66. Andersen RE, Crespo CJ, Bartlett SJ, Cheskin LJ, Pratt M. Relationship of physical activity and television watching with body weight and level of fatness among children—results from the Third National Health and Nutrition Examination Survey. JAMA. 1998;279(12): 938–942.

    Google Scholar 

  67. Anderson SE, Whitaker RC. Household routines and obesity in US preschool-aged children. Pediatrics. 2010;125(3): 420-428.

    Article  PubMed  Google Scholar 

  68. Epstein LH, Roemmich JN, Robinson JL, et al. A randomized trial of the effects of reducing television viewing and computer use on body mass index in young children. Arch Pediatr Adolesc Med. 2008;162(3): 239-245. doi:10.1001/archpediatrics.2007.45.

    Article  PubMed  Google Scholar 

  69. Schneider M, Dunton GF, Cooper DM. Media use and obesity in adolescent females[ast]. Obesity. 2007;15(9): 2328-2335.

    Article  PubMed  Google Scholar 

  70. Rideout VJ, Foehr UG, Roberts DF. Generation M2: Media in the Lives of 8–18 Year Olds. Menlo Park: Kaiser Family Foundation; 2010.

    Google Scholar 

  71. Healy GN, Dunstan DW, Salmon J, et al. Breaks in sedentary time—beneficial associations with metabolic risk. Diabetes Care. Apr 2008; 31(4).

  72. Montola M, Stenros J, Waern A. Pervasive Games: Theory and Design. Electronic: Morgan Kaufmann; 2009.

  73. Jaakko S, Annika W, Markus M. Studying the elusive experience in pervasive games. Simul Gaming. 2012; 43(3):339-355.

    Article  Google Scholar 

  74. Swing EL, Gentile DA, Anderson CA, Walsh DA. Television and video game exposure and the development of attention problems. Pediatrics. 2010;126(2): 214-221.

    Article  PubMed  Google Scholar 

  75. Landhuis CE, Poulton R, Welch D, Hancox RJ. Does childhood television viewing lead to attention problems in adolescence? Results from a prospective longitudinal study. Pediatrics. 2007;120(3): 532-537.

    Article  PubMed  Google Scholar 

  76. Davis C. Attention-deficit/hyperactivity disorder: associations with overeating and obesity. Curr Psychiatry Rep. 2010;12(5): 389-395.

    Article  PubMed  Google Scholar 

  77. Braet C, Claus L, Verbeken S, Van Vlierberghe L. Impulsivity in overweight children. Eur Child Adolesc Psychiatry. 2007;16(8): 473-483.

    Article  PubMed  Google Scholar 

  78. Bavelier D, Green CS, Han DH, Renshaw PF, Merzenich MM, Gentile DA. Brains on video games. Nat Rev Neurosci. Dec 2011;12(12).

  79. Boot WR, Kramer AF, Simons DJ, Fabiani M, Gratton G. The effects of video game playing on attention, memory, and executive control. Acta Psychol. Nov 2008; 129(3).

  80. Green CS, Bavelier D. Effect of action video games on the spatial distribution of visuospatial attention. J Exp Psychol Hum Percept Perform. Dec 2006; 32(6).

  81. Staiano AE, Abraham AA, Calvert SL. Competitive versus cooperative exergame play for African American adolescents' executive function skills: short-term effects in a long-term training intervention. Dev Psychol. Mar 2012; 48(2).

  82. Best JR. Exergaming immediately enhances children's executive function. Dev Psychol. Sep 2012; 48(5).

  83. Nouchi R, Taki Y, Takeuchi H, et al. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. Plos One. Jan 11 2012; 7(1).

  84. Jolles DD, Crone EA. Training the developing brain: a neurocognitive perspective. Front Hum Neurosci. Apr 2012; 6.

  85. Tomalski P, Johnson MH. The effects of early adversity on the adult and developing brain. Curr Opin Psychiatry. 2010;23(3): 233-238. doi:10.1097/YCO.0b013e3283387a8c.

    Article  PubMed  Google Scholar 

  86. Bohbot VD, Gupta M, Banner H, Dahmani L. Caudate nucleus-dependent response strategies in a virtual navigation task are associated with lower basal cortisol and impaired episodic memory. Neurobiol Learn Mem. 2011;96(2): 173-180.

    Article  CAS  PubMed  Google Scholar 

  87. Glasgow RE, Lichtenstein E, Marcus AC. Why don't we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. Am J Public Health. Aug 2003; 93(8).

  88. Kumar S, Nilsen W, Abernethy A, Atienza AA, Patrick K, Pavel M, Riley WT, Shar A, Spring B, Spruijit-Metz D, Hedeker D, Honavar V, Kravitz RL, Carig R, Levebvre RC, Mohr DC, Murphy SA, Quinn CC, Shusterman V, & Swendeman D. (in press) mHealth evidence workshop—exploring innovative methods to evaluate the efficacy and safety of mobile health. Am J Prev Med.

  89. Whittaker R, Merry S, Dorey E, Maddison R. A development and evaluation process for mHealth interventions: examples from New Zealand. J Heal Commun. 2012;17: 11-21. doi:10.1080/10810730.2011.649103.

    Article  Google Scholar 

  90. Eysenbach G, CONSORT-EHEALTH Group. CONSORT-EHEALTH: improving and standardizing evaluation reports of web-based and mobile health interventions. J Med Internet Res. 2011; 13(4). doi:10.2196/jmir.1923.

  91. Dunton GF, Cousineau M, Reynolds KD. The intersection of public policy and health behavior theory in the physical activity arena. J Phys Act Heal. 2010;7: S91-S98.

    Google Scholar 

  92. Bandura A. Health promotion by social cognitive means. Health Educ Behav. 2004;31(2): 143-164. doi:10.1177/1090198104263660.

    Article  PubMed  Google Scholar 

  93. Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55(1): 68-78.

    Article  CAS  PubMed  Google Scholar 

  94. Youth CoFMatDoCa. Food Marketing to Children and Youth: Threat or Opportunity? The National Academies Press; 2006.

  95. Padilla-Walker LM, Coyne SM, Fraser AM. Getting a high-speed family connection: associations between family media use and family connection. Fam Relat. Jul 2012; 61(3).

  96. Deterding SS, M., Nacke L, O'Hara K, Dixon D. Gamification Using Game-Design Elements in Non-Gaming Contexts. Paper presented at: Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems. 2011.

  97. Deterding S, Dixon D, Khaled R. Gamification: toward a definition. Chi 2011. 2011.

  98. Chaput JP, Doucet E, Tremblay A. Obesity: a disease or a biological adaptation? An update. Obes Rev. 2012;13(8): 681-691.

    Article  CAS  PubMed  Google Scholar 

  99. Institute NC. Cell phones and cancer risk: fact sheet.

  100. Colwell J, Payne J. Negative correlates of computer game play in adolescents. Br J Psychol. 2000;91: 295-310.

    Article  PubMed  Google Scholar 

  101. Subrahmanyam K, Kraut RE, Greenfield PM, Gross EF. The impact of home computer use on children's activities and development. Futur Child. 2000;10(2): 123-144.

    Article  CAS  Google Scholar 

  102. Green LA, Seifert CM. Translation of research into practice: why we can't “just do it”. J Am Board of Fam Pract. Nov-Dec 2005; 18(6).

  103. Armstrong AW, Harskamp CT, Cheeney S, Wu J, Schupp CW. Power of crowdsourcing: novel methods of data collection in psoriasis and psoriatic arthritis. J Am Acad Dermatol. 2012;67(6): 1273-1281. doi:10.1016/j.jaad.2012.05.013.

    Article  PubMed  Google Scholar 

  104. World Health Organization. Marketing of Food and Non-Alcoholic Beverages to Children: Report of a WHO Forum and Technical Meeting. Paper presented at the Geneva: WHO, Oslo, Norway; 2-5 May 2006.

  105. Westen T. Government regulation of food marketing to children: the Federal Trade Commission and the kid-vid controversy. Loy LAL Rev. 2006;39: 79.

    Google Scholar 

  106. Estrin D, Sim I. Open mHealth architecture: an engine for health care innovation. Science. Nov 5 2010; 330(6005).

Download references

Acknowledgements

This work was supported by the National Institutes of Health Cancer Control and Epidemiology Research Training Grant 5 T32 CA 009492. The authors would like to thank two anonymous reviewers for their constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor B Tate MA.

Additional information

Implications

Research: Researchers should conduct process evaluation of mHealth approaches; develop more nuanced measures of screen time and technology-related activities; investigate the relationships between sedentary behavior, screen time, and focused attention; and partner with industry for developing healthier technologies.

Practice: Health practitioners should monitor, assess, and provide feedback to child obesity program designers about users' data transfer issues, perceived security and privacy, sedentary behavior, focused attention, and maintenance of behavior change.

Policy: Policy makers should support regulation of claims and quality of medical apps for children, standardized data encryption, secure open architecture, and provide resources for research–industry partnerships that improve the look and feel of technology.

About this article

Cite this article

Tate, E.B., Spruijt-Metz, D., O’Reilly, G. et al. mHealth approaches to child obesity prevention: successes, unique challenges, and next directions. Behav. Med. Pract. Policy Res. 3, 406–415 (2013). https://doi.org/10.1007/s13142-013-0222-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13142-013-0222-3

KEYWORDS

  • Childhood
  • Obesity
  • Mobile technology
  • mHealth
  • Screen time
  • Focused attention
  • Sedentary behavior