Skip to main content

Advertisement

Log in

Weight loss—there is an app for that! But does it adhere to evidence-informed practices?

  • Published:
Translational Behavioral Medicine

Abstract

Little is known about how much smartphone apps for weight control adhere to evidence-informed practices. The aim of this study was to review and summarize the content of available weight control apps. Information on content, user rating, and price was extracted from iTunes on September 25, 2009. Apps (n = 204) were coded for adherence to 13 evidence-informed practices for weight control. Latent class analysis was used to identify subgroups of apps based on endorsement practices. Only a small percentage of apps had five or more of the 13 practices (15%). Latent class analysis revealed three main types of apps: diet, physical activity, and weight journals (19%); dietary advice and journals (34%); and weight trackers (46%). User ratings were not associated with apps from these three classes. Many apps have insufficient evidence-informed content. Research is needed that seeks to develop, improve, and evaluate these apps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ogden, C. L., Carroll, M. D., McDowell, M. A., & Flegal, K. M. (2007). Obesity among adults in the United States—no statistically significant chance since 2003–2004. NCHS Data Brief, 1, 1–8.

    PubMed  Google Scholar 

  2. Flegal, K. M., Carroll, M. D., Ogden, C. L., & Curtin, L. R. (2010). Prevalence and trends in obesity among US adults, 1999–2008. Journal of the American Medical Association, 303(3), 235–241.

    Article  PubMed  CAS  Google Scholar 

  3. Winett, R. A., Anderson, E. S., Whiteley, J. A., et al. (1999). Church-based health behavior programs: Using social cognitive theory to formulate interventions for at-risk populations. Applied and Preventive Psychology, 8(2), 129–142.

    Article  Google Scholar 

  4. Latner, J. D. (2001). Self-help in the long-term treatment of obesity. Obesity Reviews, 2(2), 82–97.

    Article  Google Scholar 

  5. Tsai, A. G., & Wadden, T. A. (2005). Systematic review: An evaluation of major commercial weight loss programs in the United States. Annals of Internal Medicine, 142(1), 56–66.

    PubMed  Google Scholar 

  6. Patrick, K., Griswold, W. G., Raab, F., & Intille, S. S. (2008). Health and the mobile phone. American Journal of Preventive Medicine, 35(2), 177–181.

    Article  PubMed  Google Scholar 

  7. Heron, K. E., & Smyth, J. M. (2010). Ecological momentary interventions: Incorporating mobile technology into psychosocial and health behaviour treatments. British Journal of Health Psychology, 15(Pt 1), 1–39.

    Article  PubMed  Google Scholar 

  8. CTIA TWA. (2010). Semi-annual wireless industry survey. http://www.ctia.org/advocacy/research/index.cfm/AID/10316. Accessed 2 Feb 2011.

  9. Kellogg, D. (2010). Among mobile phone users, Hispanics, Asians are most-likely smartphone owners in the U.S. http://blog.nielsen.com/nielsenwire/?p=25901. Accessed 2 Feb 2011.

  10. Abroms, L. C., Padmanabhan, N., Thaweethai, L., & Phillips, T. (2011). iPhone apps for smoking cessation: A content analysis. American Journal of Preventive Medicine, 40(3), 279–285.

    Article  PubMed  Google Scholar 

  11. Atienza, A. A., Hesse, B. W., Baker, T. B., et al. (2007). Critical issues in eHealth research. American Journal of Preventive Medicine, 32(5 Suppl), S71–S74.

    Article  PubMed  Google Scholar 

  12. Wantland, D. J., Portillo, C. J., Holzemer, W. L., Slaughter, R., & McGhee, E. M. (2004). The effectiveness of Web-based vs. non-Web-based interventions: A meta-analysis of behavioral change outcomes. Journal of Medical Internet Research, 6(4), e40.

    Article  PubMed  Google Scholar 

  13. Kroeze, W., Werkman, A., & Brug, J. (2006). A systematic review of randomized trials on the effectiveness of computer-tailored education on physical activity and dietary behaviors. Annals of Behavioral Medicine, 31(3), 205–223.

    Article  PubMed  Google Scholar 

  14. Norman, G. J., Zabinski, M. F., Adams, M. A., Rosenberg, D. E., Yaroch, A. L., & Atienza, A. A. (2007). A review of eHealth interventions for physical activity and dietary behavior change. American Journal of Preventive Medicine, 33(4), 336–345.

    Article  PubMed  Google Scholar 

  15. Cushing, C. C., & Steele, R. G. (2010). A meta-analytic review of eHealth interventions for pediatric health promoting and maintaining behaviors. Journal of Pediatric Psychology, 35(9), 937–949.

    Article  PubMed  Google Scholar 

  16. Winett, R. A., Tate, D. F., Anderson, E. S., Wojcik, J. R., & Winett, S. G. (2005). Long-term weight gain prevention: A theoretically based Internet approach. Preventive Medicine, 41(2), 629–641.

    Article  PubMed  Google Scholar 

  17. Abroms, L. C. P. N., & Evans, W. D. (2011). Using mobile phones for health promotion. In N. Harrington (Ed.), eHealth Technologies, in press.

  18. Ziemer, D. C., Berkowitz, K. J., Panayioto, R. M., et al. (2003). A simple meal plan emphasizing healthy food choices is as effective as an exchange-based meal plan for urban African Americans with type 2 diabetes. Diabetes Care, 26(6), 1719–1724.

    Article  PubMed  Google Scholar 

  19. Wing, R. R., Blair, E. H., Bononi, P., Marcus, M. D., Watanabe, R., & Bergman, R. N. (1994). Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care, 17(1), 30–36.

    Article  PubMed  CAS  Google Scholar 

  20. Gokee-Larose, J., Gorin, A. A., & Wing, R. R. (2009). Behavioral self-regulation for weight loss in young adults: A randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 6, 10.

    Article  PubMed  Google Scholar 

  21. Guare, J. C., Wing, R. R., Marcus, M. D., Epstein, L. H., Burton, L. R., & Gooding, W. E. (1989). Analysis of changes in eating behavior and weight loss in type II diabetic patients. Which behaviors to change. Diabetes Care, 12(7), 500–503.

    Article  PubMed  CAS  Google Scholar 

  22. Wing, R. R., Papandonatos, G., Fava, J. L., et al. (2008). Maintaining large weight losses: The role of behavioral and psychological factors. Journal of Consulting and Clinical Psychology, 76(6), 1015–1021.

    Article  PubMed  Google Scholar 

  23. Leahey, T. M., Larose, J. G., Fava, J. L., & Wing, R. R. (2011). Social influences are associated with BMI and weight loss intentions in young adults. Obesity (Silver Spring), 19(6), 1157–1162.

    Article  Google Scholar 

  24. Williamson, D. A., & Stewart, T. M. (2005). Behavior and lifestyle: Approaches to treatment of obesity. The Journal of the Louisiana State Medical Society, 157(Spec No 1), S50–S55.

    PubMed  Google Scholar 

  25. Prevention CfDC. (2009). Healthy weight—it’s not a diet, it’s a lifestyle. http://www.cdc.gov/healthyweight/index.html. Accessed 23 Nov 2009.

  26. NIH. (2009). Weight loss/dieting. http://health.nih.gov/topic/WeightLossDieting. Accessed 23 Nov 2009.

  27. FDA. (2009). Making your calories count, use the nutrition facts label for healthy weight management. http://www.fda.gov/food/labelingnutrition/consumerinformation/ucm114022.htm. Accessed 23 Nov 2009.

  28. USDA. (2009). Weight and obesity. http://fnic.nal.usda.gov/nal_display/index.php?info_center=4&tax_level=1&tax_subject=271. Accessed 23 Nov 2009.

  29. Bock, B., Graham, A., Sciamanna, C., et al. (2004). Smoking cessation treatment on the Internet: Content, quality, and usability. Nicotine & Tobacco Research, 6(2), 207–219.

    Article  Google Scholar 

  30. Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in social, behavioral, and health sciences. New York: Wiley.

    Google Scholar 

  31. Hagenaars, J. A., & McCutcheion, A. L. (2002). Applied latent class models. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  32. Muthen, L. K., & Muthen, B. O. (1998). Mplus user’s guide. Los Angeles: Muthen & Muthen.

    Google Scholar 

  33. Winett, R. A., Anderson, E. S., Wojcik, J. R., Winett, S. G., & Bowden, T. (2007). Guide to health: Nutrition and physical activity outcomes of a group-randomized trial of an Internet-based intervention in churches. Annals of Behavioral Medicine, 33(3), 251–261.

    Article  PubMed  Google Scholar 

  34. Winett, R. A., Anderson, E. S., Bickley, P. G., et al. (1997). Nutrition for a lifetime system: A multimedia system for altering food supermarket shoppers’ purchases to meet nutritional guidelines. Computers in Human Behavior, 13(3), 371–392.

    Article  Google Scholar 

  35. Winett, R. A., Roodman, A. A., Winett, S. G., Bajzek, W., Rovniak, L. S., & Whiteley, J. A. (1999). The effects of the Eat4Life Internet-based health behavior program on the nutrition and activity practices of high school girls. Journal of Gender, Culture, and Health, 4(3), 239–254.

    Article  Google Scholar 

  36. Burke, L. E., Conroy, M. B., Sereika, S. M., et al. (2011). The effect of electronic self-monitoring on weight loss and dietary intake: A randomized behavioral weight loss trial. Obesity (Silver Spring), 19(2), 338–344.

    Article  Google Scholar 

  37. Renjilian, D. A., Perri, M. G., Nezu, A. M., McKelvey, W. F., Shermer, R. L., & Anton, S. D. (2001). Individual versus group therapy for obesity: Effects of matching participants to their treatment preferences. Journal of Consulting and Clinical Psychology, 69(4), 717–721.

    Article  PubMed  CAS  Google Scholar 

  38. Khaylis, A., Yiaslas, T., Bergstrom, J., & Gore-Felton, C. (2010). A review of efficacious technology-based weight-loss interventions: Five key components. Telemed J E Health, 16(9), 931–938.

    Article  PubMed  Google Scholar 

  39. Hwang, K. O., Ottenbacher, A. J., Lucke, J. F., et al. (2011). Measuring social support for weight loss in an Internet weight loss community. Journal of Health Communication, 16(2), 198–211.

    Article  PubMed  Google Scholar 

  40. Patrick, K., Raab, F., Adams, M. A., et al. (2009). A text message-based intervention for weight loss: Randomized controlled trial. Journal of Medical Internet Research, 11(1), e1.

    Article  PubMed  Google Scholar 

  41. Backinger, C. L., Pilsner, A. M., Augustson, E. M., Frydl, A., Phillips, T., & Rowden, J. (2011). YouTube as a source of quitting smoking information. Tobacco Control, 20(2), 119–122.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Support to complete analyses and prepare this article was funded in part by grant K07CA124905 awarded to Dr. Bernard F. Fuemmeler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard F Fuemmeler PhD, MPH.

Additional information

Implications

Practice: Although popular among the lay public, many smartphone apps may lack comprehensive evidence-informed recommendations or practices for healthy weight control, so practitioners need to discuss the utility of these apps with patients if patients are using them as a supplement to treatment.

Policy: There are no industry standards so app developers will need to consider incorporating evidence-informed content.

Research: Continued research is needed that sheds light on the accuracy of smartphone apps for health behavior change in the public domain, and research is also needed that seeks to develop, improve, and evaluate these apps.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 49 kb)

About this article

Cite this article

Breton, E.R., Fuemmeler, B.F. & Abroms, L.C. Weight loss—there is an app for that! But does it adhere to evidence-informed practices?. Behav. Med. Pract. Policy Res. 1, 523–529 (2011). https://doi.org/10.1007/s13142-011-0076-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13142-011-0076-5

Keywords

Navigation