Skip to main content
Log in

Uncertainty Analysis of Time-Integrated Activity Coefficient in Single-Time-Point Dosimetry Using Bayesian Fitting Method

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Calculation of the uncertainty of the individual time-integrated activity coefficient (TIACs) is desirable in molecular radiotherapy. However, the calculation of TIAC’s uncertainty in single-time-point (STP) method has never been reported in the literature. This study presents a method based on the Bayesian fitting (BF) to calculate the standard deviation (SD) of individual TIACs in the STP dosimetry.

Methods

Biokinetic data of 177Lu-DOTATATE in kidneys were obtained from PMID33443063. BF methods with extended objective function, which optimize the fitting using prior knowledge of the function’s parameters, were used. Reference TIACs (rTIACs) were calculated by fitting a mono-exponential function to the all-time-point data. The goodness of fit was checked based on the visual inspection and the coefficient of variations (CV) of the fitted parameters < 0.5. BF with relative (BFr) and absolute-based (BFa) variance methods were used to obtain the calculated TIACs (cTIACs) from the STP dosimetry. Performance of the STP method was obtained by calculating the relative deviation (RD) between cTIACs and rTIACs.

Results

Visual inspection showed a good fit for all patients with CV of fitted parameters less than 50%. The mean ± SD of cTIAC’s %RD were 7.0 ± 25.2 for BFr and 2.6 ± 8.9 for BFa. The range of %CV of the individual cTIAC’s SD for BFr and BFa methods was 36–78% and 22–33%, respectively, while the %CV of the rTIAC SD was 0.8–49%.

Conclusion

We introduce the BF method to calculate the SD of individual TIACs in STP dosimetry. The presented method might be used as an alternative method for uncertainty analysis in STP dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used in this study are available in PMID33443063.

References

  1. Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging. 2011;38:192–200.

    Article  CAS  PubMed  Google Scholar 

  2. Glatting G, Bardiès M, Lassmann M. Treatment planning in molecular radiotherapy. Z Med Phys. 2013;23:262–9.

    Article  PubMed  Google Scholar 

  3. Hardiansyah D, Maass C, Attarwala AA, Müller B, Kletting P, Mottaghy FM, et al. The role of patient-based treatment planning in peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2016;43:871–80.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson PA, Hofman MS, Hicks RJ, Scalzo M, Violet J. Radiation dosimetry in 177lu-psma-617 therapy using a single posttreatment spect/ct scan: A novel methodology to generate time- and tissue-specific dose factors. J Nucl Med. 2020;61:1030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rinscheid A, Kletting P, Eiber M, Beer AJ, Glatting G. Influence of sampling schedules on [177Lu]Lu-PSMA dosimetry. EJNMMI Phys. 2020;7:41.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Devasia TP, Dewaraja YK, Frey KA, Wong KK, Schipper MJ. A novel time-activity information-sharing approach using nonlinear mixed models for patient-specific dosimetry with reduced imaging time points: application in SPECT/CT after 177Lu-DOTATATE. J Nucl Med. 2021;62:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hardiansyah D, Riana A, Beer AJ, Glatting G. Single-time-point dosimetry using model selection and nonlinear mixed-effects modelling: a proof of concept. EJNMMI Phys. 2023;10:1–12.

    Article  Google Scholar 

  8. Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy with 177 Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59:75–81.

    Article  PubMed  Google Scholar 

  9. Ligonnet T, Pistone D, Auditore L, Italiano A, Amato E, Campennì A, et al. Simplified patient-specific renal dosimetry in 177Lu therapy: a proof of concept. Phys Medica. 2021;92:75–85.

    Article  Google Scholar 

  10. Gear JI, Cox MG, Gustafsson J, Gleisner KS, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45:2456–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finocchiaro D, Gear JI, Fioroni F, Flux GD, Murray I, Castellani G, et al. Uncertainty analysis of tumour absorbed dose calculations in molecular radiotherapy. EJNMMI Phys. 2020;7:63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Willowson KP, Eslick E, Ryu H, Poon A, Bernard EJ, Bailey DL. Feasibility and accuracy of single time point imaging for renal dosimetry following 177 Lu-DOTATATE (‘Lutate’) therapy. EJNMMI Phys. 2018;5:33.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peters SMB, Hofferber R, Privé BM, de Bakker M, Gotthardt M, Janssen M, et al. [68Ga]Ga-PSMA-11 PET imaging as a predictor for absorbed doses in organs at risk and small lesions in [177Lu]Lu-PSMA-617 treatment. Eur J Nucl Med Mol Imaging. 2022;49:1101–12.

    Article  CAS  PubMed  Google Scholar 

  14. Brosch-Lenz J, Delker A, Völter F, Unterrainer LM, Kaiser L, Bartenstein P, et al. Toward single-time-point image-based dosimetry of 177Lu-PSMA-617 therapy. J Nucl Med. 2023;64:767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maaß C, Sachs JP, Hardiansyah D, Mottaghy FM, Kletting P, Glatting G. Dependence of treatment planning accuracy in peptide receptor radionuclide therapy on the sampling schedule. EJNMMI Res. 2016;6:1–9.

    Article  Google Scholar 

  16. Hardiansyah D, Guo W, Kletting P, Mottaghy FM, Glatting G. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: a simulation study on the effect of sampling schedule and noise. Med Phys. 2016;43:5145–54.

    Article  CAS  PubMed  Google Scholar 

  17. Kletting P, Kull T, Maaß C, Malik N, Luster M, Beer AJ, et al. Optimized peptide amount and activity for 90Y-labeled DOTATATE therapy. J Nucl Med. 2016;57:503–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kletting P, Maaß C, Reske S, Beer AJ, Glatting G. Physiologically based pharmacokinetic modeling is essential in 90Y-labeled anti-CD66 radioimmunotherapy. PLoS ONE. 2015;10:1–15.

    Article  Google Scholar 

  19. Ardenfors O, Nilsson JN, Thor D, Hindorf C. Simplified dosimetry for kidneys and tumors in 177Lu-labeled peptide receptor radionuclide therapy. EJNMMI Phys. 2022;9:44.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tran-Gia J, Lassmann M. Characterization of noise and resolution for quantitative 177 Lu SPECT/CT with XSPECT quant. J Nucl Med. 2019;60:50–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mirando D, Dewaraja YK, Cole NM, Nelson AS. In pursuit of fully automated dosimetry: evaluation of an automatic VOI propagation algorithm using contour intensity-based SPECT alignments. Eur J Nucl Med Mol Imaging. 2020;In: Eur. J. Nucl. Med. Mol. Imaging. Springer One New York Plaza, Suite 4600, New York, Ny, United States, pp S236–S236.

  22. Kletting P, Schimmel S, Kestler HA, Hänscheid H, Luster M, Fernández M, et al. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient. Med Phys. 2013;40: 102504.

    Article  CAS  PubMed  Google Scholar 

  23. Bonate PL. Pharmacokinetics pharmacodynamics modeling and simulation, 2nd ed. 2011;Springer, New York.

  24. Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 1998;47:484–92.

    Article  CAS  PubMed  Google Scholar 

  25. Hardiansyah D, Riana A, Kletting P, Zaid NRR, Eiber M, Pawiro SA, et al. A population-based method to determine the time-integrated activity in molecular radiotherapy. EJNMMI Phys. 2021;8:82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kletting P, Schimmel S, Hänscheid H, Luster M, Fernández M, Nosske D, et al. The NUKDOS software for treatment planning in molecular radiotherapy. Z Med Phys. 2015;25:264–74.

    Article  PubMed  Google Scholar 

  27. Mahmoudi E, Pirayesh E, Deevband MR, Amoui M, Rad MG, Ghorbani M. Patient-specific dosimetry in radioligand therapy (RLT) for metastatic prostate cancer using 177Lu-DKFZ-PSMA-617. Nucl Med Mol Imaging. 2010;2021(55):237–44.

    Google Scholar 

  28. Hardiansyah D, Riana A, Eiber M, Beer AJ, Glatting G. Population-based model selection for an accurate estimation of time-integrated activity using non-linear mixed-effects modelling. Zeitschrift fuer Medizinische Phys. 2023;1–9. https://doi.org/10.1016/j.zemedi.2023.01.007.

  29. Vegt E, De JM, Wetzels JFM, Masereeuw R, Melis M, Oyen WJG, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Hibah Publikasi Terindeks Internasional (PUTI) Pascasarjana 2022–2023 from Universitas Indonesia with grant number NKB-277/UN2.RST/HKP.05.00/2022. The authors gratefully acknowledge the financial support provided by Universitas Indonesia (Hibah PUTI Pascasarjana, NKB-277/UN2.RST/HKP.05.00/2022), which made this research possible. The authors would also like to express their appreciation to the National Research and Innovation Agency, Indonesia (DIPA Pusdiklat BATAN, No. 216/KA/VIII/2021; Beasiswa Lanjutan BRIN, No. 2/II/HK/2022), for their scholarship to AFJ, which enabled the author to complete this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Deni Hardiansyah; methodology: Deni Hardiansyah; formal analysis and investigation: Achmad F. Jundi, M. Dlorifun Naqiyyun, Bisma B. Patrianesha, Deni Hardiansyah; writing—original draft preparation: Achmad F. Jundi, M. Dlorifun Naqiyyun, Bisma B. Patrianesha, Deni Hardiansyah; writing—review and editing: Achmad F. Jundi, M. Dlorifun Naqiyyun, Bisma B. Patrianesha, Intan A. S. Mu’minah, Ade Riana, Deni Hardiansyah; funding acquisition: Achmad F. Jundi, Intan A. S. Mu’minah, Deni Hardiansyah; resources: Deni Hardiansyah; supervision: Deni Hardiansyah.

Corresponding author

Correspondence to Deni Hardiansyah.

Ethics declarations

Competing Interests

Achmad F. Jundi, M. Dlorifun Naqiyyun, Bisma B. Patrianesha, Intan A. S. Mu’minah, Ade Riana, and Deni Hardiansyah declare that they have no competing interests.

Ethical Approval

The study received approval from the Institutional Review Board, and written informed consent was obtained from all participating patients (PMID33443063).

Consent for Publication

All authors read the manuscript and consented to its publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jundi, A.F., Naqiyyun, M.D., Patrianesha, B.B. et al. Uncertainty Analysis of Time-Integrated Activity Coefficient in Single-Time-Point Dosimetry Using Bayesian Fitting Method. Nucl Med Mol Imaging 58, 120–128 (2024). https://doi.org/10.1007/s13139-024-00851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-024-00851-8

Keywords

Navigation