Skip to main content

Advertisement

Log in

Does the Incremental Value of 123I-Metaiodobenzylguanidine SPECT/CT over Planar Imaging Justify the Increase in Radiation Exposure?

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Planar scintigraphy with 123I-radiolabeled metaiodobenzylguanidine (123I-mIBG) is an important imaging modality to evaluate neuroblastoma. In recent years, Single Photon Emission Computed Tomography combined with Computed Tomography (SPECT/CT) has revolutionized nuclear medicine. Nevertheless, the addition of the CT has increased the patients' irradiation. We aimed to evaluate the incremental benefits of 123I-mIBG SPECT/CT over conventional planar imaging and to estimate the relative increase of radiation dose.

Methods

We retrospectively evaluated the added value of 56 SPECT/CT performed in 40 children in terms of better characterization of the lesion and its locoregional extension, better lymph node staging, detection of new lesions, and elimination of false positives by a paired comparison between the planar images and the SPECT/CT ones. Then, we calculated the percentage contribution of the additional radiation of the CT in this hybrid imagery.

Results

In 88% (49 out of 56) of the examinations, SPECT/CT provided additional information, which was crucial in 20% of the cases. It allowed a better characterization of the lesion and its locoregional extension in 44 cases, a better lymph node staging in 28 cases, the detection of 33 new lesions, and the elimination of 9 false positives. The CT effective dose was significantly lower than the SPECT one. The average additional radiation exposure due to CT was 12% (4–23%).

Conclusion

123I-mIBG SPECT/CT has an undeniable added value that improves planar imaging interpretation and impacts patient management. These potential benefits would justify the low additional radiation induced by the CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Heck JE, Ritz B, Hung RJ, Hashibe M, Boffetta P. The epidemiology of neuroblastoma: a review. Paediatr Perinat Epidemiol. 2009;23:125–43.

    Article  Google Scholar 

  2. Cohn SL, Pearson ADJ, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27:289–97.

    Article  Google Scholar 

  3. Lonergan GF, Schwab CM, Suarez ES, Carlson CL. From the archives of the AFIP neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologicpathologic correlation. Radiographics. 2002;29:911–34.

    Article  Google Scholar 

  4. Papaioannou G, McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging. 2005;5:116–27.

    Article  Google Scholar 

  5. Fukuoka M, Junichi T, Takafumi M, Seigo K. Comparison of diagnostic value of 123I- mIBG and high-dose 131I-mIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/ paraganglioma and neuroblastoma. Clin Nuc Med. 2011;36:1–7.

    Article  Google Scholar 

  6. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.

    Article  CAS  Google Scholar 

  7. Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

    Article  Google Scholar 

  8. Balwierz W, Wieczorek A, Klekawka T, Garus K, Bolek-Marzec K, Perek D, et al. Treatment results of children with neuroblastoma:report of Polish Pediatric Solid Tumor Group. Przegl Lek. 2010;67:387–92.

    PubMed  Google Scholar 

  9. Perwein T, Lackner H, Sovinz P, Benesch M, Schmidt S, Schwinger W, et al. Survival and late effects in children with stage 4 neuroblastoma. Pediatr Blood Cancer. 2011;57:629–35.

    Article  Google Scholar 

  10. Boubaker A, Bischof DA. Nuclear medicine procedures and neuroblastoma in childhood Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med. 2003;47:31–40.

    CAS  PubMed  Google Scholar 

  11. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the international neuroblastome risk group project. Radiology. 2011;261:243–57.

    Article  Google Scholar 

  12. Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffoli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.

    Article  Google Scholar 

  13. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–58.

    Article  Google Scholar 

  14. Jaques S, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and miodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res. 1987;47:3920–8.

    PubMed  Google Scholar 

  15. Gasnier B, Roisin MP, Scherman D, Coornaert S, Desplanches G, Henry JP. Uptake of metaiodobenzylguanidine by bovine chromaffin granule membranes. Mol Pharmacol. 1986;29:275–80.

    CAS  PubMed  Google Scholar 

  16. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24:65–86.

    Article  Google Scholar 

  17. Vik TA, Puger T, Kadota R, Castel V, Tulchinsky M, Farto JCA, et al. 123I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicentertrial. Pediatr Blood Cancer. 2009;52:784–90.

    Article  Google Scholar 

  18. Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35:1753–7.

    CAS  PubMed  Google Scholar 

  19. Franzius C, Hermann K, Weckesser M, Kopka K, Juergens KU, Vormoor J, et al. Whole- body PET/CT with 11C-metahydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47:1635–42.

    PubMed  Google Scholar 

  20. Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. Am J Roentgenol. 2008;190:1085–90.

    Article  Google Scholar 

  21. Bar-Sever Z, Biassoni L, Shulkin B, Kong G, Hofman MS, Lopci E, et al. Guidelines on nuclear medicine imaging in neuroblastoma. Eur J Nucl Med Mol Imaging. 2018;45:2009–24.

    Article  CAS  Google Scholar 

  22. Montes C, Tamayo P, Hernandez J, Gomez-Caminero F, Garcia S, Martin C, et al. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations. Ann Nucl Med. 2013;27:610–7.

    Article  CAS  Google Scholar 

  23. Valentin J. Radiation dose to patients from radiopharmaceuticals:(addendum 2 to ICRP publication 53) ICRP publication 80 approved by the commission in september 1997. Ann ICRP. 1998;28:1.

    Article  Google Scholar 

  24. Jessen KA, Panzer WSP. European guidelines on quality criteria for computed tomography. brussels, belgium: European commission. journal = EUR 16262. 2000.

  25. Meyer-Rochow GY, Schembri GP, Benn DE, SywakMS, Delbridge LW, Robinson BG, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography(MIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol. 2010;17:392–400.

  26. Nadel HR. SPECT/CT in pediatric patient management. Eur J Nucl Med Mol Imaging. 2014;41:104–14.

    Article  Google Scholar 

  27. Liu B, Servaes S, Zhuang H. SPECT/CT mIBG imaging is crucial in the follow-up of the patients with high-risk neuroblastoma. Clin Nucl Med. 2018;43:232–8.

    Article  CAS  Google Scholar 

  28. Theerakulpisut D, Raruenrom Y, Wongsurawat N, Somboonporn C. Value of SPECT/CT in diagnostic 131I-mIBG scintigraphy in patients with neuroblastoma. Nucl Med Mol Imaging. 2018;52:350–8.

    Article  Google Scholar 

  29. Shahrokhi P, Emami-Ardekani A, Harsini S, Eftekhari M, Fard-Esfahani A, Fallahi B, et al. 68Ga-DOTATATE PET/CT compared with 131I-MIBG SPECT/CT in the evaluation of neural crest tumors. Asia Ocean J Nucl Med Biol. 2020;8:8–17.

    PubMed  PubMed Central  Google Scholar 

  30. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36:258–78.

    Article  Google Scholar 

  31. Rottenburger C, Juettner E, Harttrampf AC, Hentschel M, Kontny U, Roessler J. False- positive radio-iodinated metaiodobenzylguanidine (123I-MIBG) accumulation in a mast cell infiltrated infantile haemangioma. Br J Radiol. 2010;83:e168–71.

    Article  CAS  Google Scholar 

  32. Frappaz D, Giammarile F, Thiesse P, Ranchere-Vince D, Louis D, Guilbaud L, et al. False positive MIBG scan. Med Pediatr Oncol. 1997;29:589–92.

    Article  CAS  Google Scholar 

  33. Schindler T, Yu C, Rossleigh M, Pereira J, Cohn R. False positive MIBG uptake in pneumonia in a patient with stage IV neuroblastoma. Clin Nucl Med. 2010;35:743–5.

    Article  Google Scholar 

  34. Acharya J, Chang PT, Gerard P. Abnormal MIBG uptake in a neuroblastoma patient with right upper lobe atelectasis. Pediatr Radiol. 2012;42:1259–62.

    Article  Google Scholar 

  35. Jacobs A, Lenoir P, Delree M, Ramet J, Piepsz A. Unusual Tc-99m MDP and I-123 MIBG images in focal pyelonephritis. Clin Nucl Med. 1990;15:821–4.

    Article  CAS  Google Scholar 

  36. Bonnin F, Lumbroso J, Tenenbaum F, Hartmann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35:803–10.

    CAS  PubMed  Google Scholar 

  37. Piccardo A, Morana G, Puntoni M, Campora S, Sorrentino S, Zucchetta P, et al. Diagnosis, treatment response, and prognosis: the role of 18F-DOPA PET/CT in children affected by neuroblastoma in comparison with 123I-mIBG scan: the first prospective study. J Nucl Med. 2020;61:367–74.

    Article  CAS  Google Scholar 

  38. Law M, Ma WH, Leung R, Li S, Wong KK, Ho WY, et al. Evaluation of patient effective dose from sentinel lymph node lymphoscintigraphy in breast cancer: a phantom study with SPECT/CT and ICRP-103 recommendations. Eur J Radiol. 2012;81:e717–20.

    Article  Google Scholar 

  39. Larkin AM, Serulle Y, Wagner S, Noz ME, Friedman K. Quantifying the increase in radiation exposure associated with SPECT/CT compared to SPECT alone for routine nuclear medicine examinations. Int J Mol Imaging. 2011;2011:897202–6.

    Article  Google Scholar 

  40. Sharma P, Sharma S, Ballal S, Chandrasekhar B, Arun M, Rakesh K. SPECT/CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone. Nucl Med Commun. 2012;33:926–32.

    Article  Google Scholar 

  41. Quinn B, Dauer Z, Pandit-Taskar N, Schoder H, Dauer LT. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med imaging. 2016;16:41–51.

    Article  Google Scholar 

  42. Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosimetry. 2010;141:50–5.

    Article  CAS  Google Scholar 

  43. Paiva F G, do Carmo Santana P, Mourao A P. Evaluation of patient effective dose in a PET/CT test. Appl Radiat Isot. 2019;145:137–41.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dorra Ben-Sellem collected the data and wrote the article. Naima Ben-Rejeb did the literature search and analyzed the data.

Corresponding author

Correspondence to Dorra Ben-Sellem.

Ethics declarations

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the Helsinki declaration as revised in 2013 and its later amendments or comparable ethical standards.

Informed Consent

It is a retrospective study that was approved by the hospital ethics committee and that did not require informed consent from patients.

Competing Interests

Dorra Ben-Sellem and Naima Ben-Rejeb declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Sellem, D., Ben-Rejeb, N. Does the Incremental Value of 123I-Metaiodobenzylguanidine SPECT/CT over Planar Imaging Justify the Increase in Radiation Exposure?. Nucl Med Mol Imaging 55, 173–180 (2021). https://doi.org/10.1007/s13139-021-00707-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-021-00707-5

Keywords

Navigation