KSNM60 in Cardiology: Regrowth After a Long Pause

Abstract

The Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary in honor of the nuclear medicine professionals who have dedicated their efforts towards research, academics, and the more comprehensive clinical applications and uses of nuclear imaging modalities. Nuclear cardiology in Korea was at its prime time in the 1990s, but its growth was interrupted by a long pause. Despite the academic and practical challenges, nuclear cardiology in Korea now meets the second leap, attributed to the growth in molecular imaging tailored for many non-coronary diseases and the genuine values of nuclear myocardial perfusion imaging. In this review, we describe the trends, achievements, challenges, and perspectives of nuclear cardiology throughout the 60-year history of the KSNM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Koh CS. The historical background and current status of nuclear cardiology in Korea. Korean J Nucl Med. 1986;20:1–7.

    Google Scholar 

  2. 2.

    Lee M. The present status of nuclear medicine in Korea. Korean J Nucl Med. 1968;2:9–14.

    Google Scholar 

  3. 3.

    Koh CS. Development history and current status of nuclear medicine in Korea. Korean J Nucl Med. 1979;13:1–5.

    Google Scholar 

  4. 4.

    Korean Society of Nuclear Medicine. The 50-year history of the Korean Society of Nuclear Medicine. 2011. https://www.ksnm.or.kr/member/50th.pdf. Accessed 4 June 2021.

  5. 5.

    Lee M, Koh CS. Nuclear medicine application in Seoul National University Hospital: 1964–1986. Korean J Nucl Med. 1988;22:1–14.

    Google Scholar 

  6. 6.

    Suh HJ, Lee JK, Lee M. Measurement of cardiac output with RISA. Korean J Nucl Med. 1967;1:S106.

    Google Scholar 

  7. 7.

    Lee AK, Kil KS, Park JY, Kim DS, Kim JI, Koh CS. A comparative study of the cardiac output measurement with RIHSA and 131I-hippuran. Korean J Nucl Med. 1970;4:73–6.

    Google Scholar 

  8. 8.

    Chung NS, Cho SY, Jang YS, Park KS, Shim WH, Lee WK. Comparative study on stress electrocardiography and thallium-201 stress myocardial scintigraphic imaging in coronary artery disease. Korean Circ J. 1986;16:27–36.

    Article  Google Scholar 

  9. 9.

    Woo Y, Baek Y, Kim E, Lee H, Kim J, Lee H, et al. Dipyridamole thallium-201 myocardial scan. Korean J Nucl Med. 1986;20:128.

    Google Scholar 

  10. 10.

    Lee SC, Lee BR, Chae SC, Jun JE, Park WH, Lee J, et al. Diagnostic value of Tc-99m MIBI myocardial perfusion scintigraphy during maximal coronary artery dilation with adenosine in coronary artery disease. Korean Circ J. 1992;22:956–67.

    Article  Google Scholar 

  11. 11.

    Jeong JM, Chung JK, Lee DS, Kwark CE, Lee KH, Lee MC, et al. Preparation of 82Sr/82Rb generator and positron emission tomographic image of normal volunteer. Korean J Nucl Med. 1994;28:326–30.

    Google Scholar 

  12. 12.

    Kim BT, Kim SE, Kim JY, Choi Y, Lee KH, Choe YS, et al. A refined method for quantification of myocardial blood flow using N-13 ammonia and dynamic PET. Korean J Nucl Med. 1997;31:73–82.

    Google Scholar 

  13. 13.

    Koh CS, Lee MC, Chung JK, Lee DS, Jeong JM, Shin SA, et al. The heterogeneity of flow distribution and partition coefficient in 15O–H2O myocardium positron emission tomography. Korean J Nucl Med. 1998;32:32–49.

    Google Scholar 

  14. 14.

    Koh EM, Lee KH, Um JH, Kim MA, Oh BH, Park YB, et al. Myocardial SPECT imaging of post-infarction ventricular aneurysm. Korean J Nucl Med. 1989;23:19–25.

    Google Scholar 

  15. 15.

    Kim SE, Nam GB, Choi CW, Choi KJ, Lee DS, Sohn DW, et al. Quantitative analysis of thallium-201 myocardial tomograms. Korean J Nucl Med. 1991;25:165–76.

    Article  Google Scholar 

  16. 16.

    Lee JT, Lee KB, Heo J, Iskandrian AS. Variations in the size of the ischemic myocardium due to differences in the normal file. Korean J Nucl Med. 1992;26:49–57.

    Google Scholar 

  17. 17.

    Lee MC, Chung JK, Lee YW, Seo JD, Park YB, Lee DS, et al. Comparison between myocardial perfusion and function in rest state in coronary artery disease - dipyridamole 99mTc-MIBI SPECT and rest gated blood pool scan. Korean J Nucl Med. 1992;26:265–73.

    Google Scholar 

  18. 18.

    Kim KW, Kim DY, Park MJ, Choi TY, Kang HS, Choue CW, et al. Clinical characteristics and findings of 99mTc-MIBI heart SPECT in patients with acute myocardial infarction with normal coronary arteriography. Korean J Nucl Med. 1993;27:65–70.

    Google Scholar 

  19. 19.

    Kim JY, Bom HS, Park JH, Ahn Y, Jeong MH, Cho JG, et al. Comparison of 99mTc-MIBI myocardial uptake at rest with reinjection and 24-hour after reinjection images of 201Tl. Korean J Nucl Med. 1992;26:274–9.

    Google Scholar 

  20. 20.

    Lee KB, Lee JT, Park WH, Chung BC, Choi CI, Jun JE, et al. Adenosine 99mTc-MIBI scintigraphy in the diagnosis of coronary artery disease: comparison with exercise 99m Tc-MIBI scintigraphy. Korean J Nucl Med. 1992;26:72–81.

    Google Scholar 

  21. 21.

    Lee KB, Lee JT, Chung BC, Chae SC, Kwak DS, Choi JI, et al. Myocardial uptake and clearance of thallium-201 in normal subjects: a comparison between pharmacologic stress with intravenous adenosine. Korean J Nucl Med. 1993;27:35–50.

    Google Scholar 

  22. 22.

    Choi JY, Moon DH, Lee CW, Shin JW, Park SW, Hong MK, et al. Prediction of left ventricular dilatation with thallium-201 SPET imaging after primary angioplasty in patients with acute myocardial infarction. Eur J Nucl Med. 2002;29:728–34.

    CAS  Article  Google Scholar 

  23. 23.

    Lee SJ, Lee KH, Park SM, Lee EJ, Chung HW, Cho YS, et al. Myocardial perfusion defects and coronary risk factors in symptomatic and asymptomatic elderly women. Int J Cardiovasc Imaging. 2008;24:277–81.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Chun KA, Lee J, Lee SW, Ahn BC, Ha JH, Cho IH, et al. Direct comparison of adenosine and adenosine 5’-triphosphate as pharmacologic stress agents in conjunction with Tl-201 SPECT: hemodynamic response, myocardial tracer uptake, and size of perfusion defects in the same subjects. J Nucl Cardiol. 2006;13:621–8.

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Kong EJ, Cho IH, Kang WJ, Kim SM, Won KS, Lim ST, et al. Added value of 3D cardiac SPECT/CTA fusion imaging in patients with reversible perfusion defect on myocardial perfusion SPECT. Nucl Med Mol Imaging. 2009;43:513–8.

    Google Scholar 

  26. 26.

    Park GM, Kim YH, Yun SC, Ahn JM, Choi HI, Roh JH, et al. Anatomic or functional evaluation as an initial test for stable coronary artery disease: a propensity score analysis. J Nucl Med. 2016;57:1364–9.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Kim YH, Ahn JM, Park DW, Song HG, Lee JY, Kim WJ, et al. Impact of ischemia-guided revascularization with myocardial perfusion imaging for patients with multivessel coronary disease. J Am Coll Cardiol. 2012;60:181–90.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Cho SG, Jabin Z, Park KS, Kim J, Kang SR, Kwon SY, et al. Clinical values of left ventricular mechanical dyssynchrony assessment by gated myocardial perfusion SPECT in patients with acute myocardial infarction and multivessel disease. Eur J Nucl Med Mol Imaging. 2017;44:259–66.

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Han S, Kim YH, Ahn JM, Kang SJ, Oh JS, Shin E, et al. Feasibility of dynamic stress 201Tl/rest 99mTc-tetrofosmin single photon emission computed tomography for quantification of myocardial perfusion reserve in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging. 2018;45:2173–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Koh CS, Lee MC, Chung JK, Lee DS, Seo JD, Jeong JM, et al. A study on the estimation of regional myocardial blood flow in experimental canine model with coronary thrombosis using Rb-82 dynamic myocardial positron emission tomography. Korean J Nucl Med. 1995;29:48–53.

    Google Scholar 

  31. 31.

    Kim SE, Kim JY, Choi Y, Lee KH, Choe YS, Kim JH, et al. Quantification of myocardial blood flow using dynamic N-13 ammonia PET and factor analysis. Korean J Nucl Med. 1999;33:327–37.

    Article  Google Scholar 

  32. 32.

    Yu KH. Synthesis and 18F labelling organic ammonium salts to new cardiac flow tracer for PET and their biodistribution. Korean J Nucl Med. 1994;28:326–30.

    Google Scholar 

  33. 33.

    Choi Y, Huang SC, Hawkins RA, Kim JY, Kim BT, Hoh CK, et al. Quantification of myocardial blood flow using N-13-ammonia and PET: comparison of tracer models. J Nucl Med. 1999;40:1045–55.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic (H215O PET and factor analysis. J Nucl Med. 2001;42:782–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Lee JS, Lee DS, Ahn JY, Yeo JS, Cheon GJ, Kim SK, et al. Generation of parametric image of regional myocardial blood flow using H215O dynamic PET and a linear least-squares method. J Nucl Med. 2005;46:1687–95.

    PubMed  Google Scholar 

  36. 36.

    Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis. J Nucl Med. 2001;42:938–43.

    CAS  PubMed  Google Scholar 

  37. 37.

    Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Parametric image of myocardial blood flow generated from dynamic H215O PET using factor analysis and cluster analysis. Med Biol Eng Comput. 2005;43:678–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Lee BI, Lee JS, Lee DS, Choi SJ. Myocardial blood flow quantification in dynamic PET: an ensemble ICA approach. 2005. http://mlg.postech.ac.kr/static/publications/inter_conf/2005/icann05_bilee.pdf. Accessed 4 June 2021.

  39. 39.

    Kim DY, Kim HJ, Yu KH, Min JJ. Synthesis of [18F]-labeled (6-fluorohexyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioconjugate Chem. 2012;23:431–7.

    CAS  Article  Google Scholar 

  40. 40.

    Kim DY, Kim HJ, Yu KH, Min JJ. Synthesis of [18F]-labeled (2-(2-fluoroethoxy)ethyl)tris(4-methoxyphenyl)phosphonium cation as a potential agent for positron emission tomography myocardial imaging. Nucl Med Biol. 2012;39:1093–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Kim DY, Kim HJ, Yu KH, Min JJ. Synthesis of [18F]-labeled (2-(2-fluoroethoxy)ethyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioorg Med Chem Lett. 2012;22:319–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Kim DY, Kim HS, Jang HY, Kim JH, Bom HS, Min JJ. Comparison of the cardiac microPET images obtained using [F-18]FPTP and [N-13]NH3 in rat myocardial infarction models. ACS Med Chem Lett. 2014;5:1124–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Kim DY, Kim HS, Min JJ. Radiosynthesis and evaluation of 18F-labeled aliphatic phosphonium cations as a myocardial imaging agent for positron emission tomography. Nucl Med Commun. 2015;36:747–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Kim DY, Kim HS, Min JJ. Comparison of 18F-labeled fluoroalkylphosphonium cations with 13N-NH3 for PET myocardial perfusion imaging. J Nucl Med. 2015;56:1581–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Kim DY, Min JJ. Synthesis and evaluation of 18F-labeled fluoroalkyl triphenylphosphonium salts as mitochondrial voltage sensors in PET myocardial imaging. Methods Mol Biol. 2015;1265:59–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Maddahi J, Lazewatsky J, Udelson JE, Berman DS, Beanlands RSB, Heller GV, et al. Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery aisease. J Am Coll Cardiol. 2020;76:391–401.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Lee JM, Kim CH, Koo BK, Hwang D, Park J, Zhang J, et al. Integrated myocardial perfusion imaging diagnostics improve detection of functionally significant coronary artery stenosis by 13N-ammonia positron emission tomography. Circ Cardiovasc Imaging. 2016;9:e004768.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Cho SG, Park KS, Kim J, Kang SR, Song HC, Kim JH, et al. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease. Ann Nucl Med. 2017;31:144–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Cho SG, Lee SJ, Na MH, Choi YY, Bom HHS. Comparison of diagnostic accuracy of PET-derived myocardial blood flow parameters: a meta-analysis. J Nucl Cardiol. 2020;27:1955–66.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    AlBadri A, Piccinelli M, Cho SG, Lee JM, Jaber W, De Cecco CN, et al. Rationale and design of the quantification of myocardial blood flow using dynamic PET/CTA-fused imagery (DEMYSTIFY) to determine physiological significance of specific coronary lesions. J Nucl Cardiol. 2020;27:1030–9.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Shin S, Chung J, Lee M, Cho B, Seo J, Lee Y, et al. Measurement of the left ventricular regurgitation by gated cardiac blood pool scan: before and after valvular replacement surgery. Korean J Nucl Med. 1982;16:29–36.

    Google Scholar 

  52. 52.

    Sohn I, Shin S, Lee M, Seo J, Koh C, Lee M. Right ventricular ejection fraction measured with gated cardiac blood pool scan in mitral valve diseases. Korean J Med Assoc. 1983;26:151–5.

    Google Scholar 

  53. 53.

    Lee DY, Lee JD, Kim SJ, Park CY, Cho SY, Ham JK, et al. Evaluation of sympathetic innervation in cardiomyopathy with 123I - MIBG. Korean J Nucl Med. 1993;27:195–202.

    Google Scholar 

  54. 54.

    Choi JY, Lee KH, Hong KP, Kim BT, Seo JD, Lee WR, et al. Iodine-123 MIBG imaging before treatment of heart failure with carvedilol to predict improvement of left ventricular function and exercise capacity. J Nucl Cardiol. 2001;8:4–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50–9.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Dorbala S, Ando Y, Bokhari S, Dispenzieri, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol. 2020;27:659–73.

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Kim YJ, Ha S, Kim Y-I. Cardiac amyloidosis imaging with amyloid positron emission tomography: a systematic review and meta-analysis. J Nucl Cardiol. 2020;27(1):123–32. https://doi.org/10.1007/s12350-018-1365-x.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Paeng JC, Choi JY. Nuclear Imaging for cardiac amyloidosis: bone scan, SPECT/CT, and amyloid-targeting PET. Nucl Med Mol Imaging. 2021;55:61–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, et al. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2020;27:2154–63.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Jo IY, Lee JW, Kim WC, Min CK, Kim ES, Yeo SG, et al. Relationship between changes in myocardial F-18 fluorodeoxyglucose uptake and radiation dose after adjuvant three-dimensional conformal radiotherapy in patients with breast cancer. J Clin Med. 2020. https://doi.org/10.3390/jcm9030666.

  62. 62.

    Kim W, Jeong MH, Park OY, Rhew JY, Bom HS, Choi SJ, et al. Effects of beta-radiation using a holmium-166 coated balloon on neointimal hyperplasia in a porcine coronary stent restenosis model. Circ J. 2003;67:625–9.

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Hong MK, Park SW, Moon DH, Oh SJ, Lee CW, Kim YH, et al. Intravascular ultrasound analysis of nonstented adjacent segments in diffuse in-stent restenosis treated with radiation therapy with a rhenium-188-filled balloon. Catheter Cardiovasc Interv. 2003;58:428–33.

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Koo BK, Lee MM, Oh S, Chae IH, Kim HS, Sohn DW, et al. Effects of beta-radiation with a 188rhenium-filled balloon catheter system on non-stented adjacent coronary artery segments. Int J Cardiol. 2004;96:73–7.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Park S-W, Hong M-K, Moon DH, Oh SJ, Lee CW, Kim J-J, et al. Treatment of diffuse in-stent restenosis with rotational atherectomy followed by radiation therapy with a rhenium-188–mercaptoacetyltriglycine-filled balloon. J Am Coll Cardiol. 2001;38(3):631–7.

  66. 66.

    Lee SW, Park SW, Hong MK, Kim YH, Lee JH, Park JH, et al. Long-term outcomes after treatment of diffuse in-stent restenosis with rotational atherectomy followed by beta-radiation therapy with a 188Re-MAG3-filled balloon. Int J Cardiol. 2005;99:201–5.

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Noh TS, Moon SH, Cho YS, Hong SP, Lee EJ, Choi JY, et al. Relation of carotid artery 18F-FDG uptake to C-reactive protein and Framingham risk score in a large cohort of asymptomatic adults. J Nucl Med. 2013;54:2070–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Moon SH, Cho YS, Noh TS, Choi JY, Kim BT, Lee KH. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc Imaging. 2015;8:949–56.

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Lee SJ, On YK, Lee EJ, Choi JY, Kim BT, Lee KH. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med. 2008;49:1277–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Cho SG, Park KS, Kim J, Kang SR, Kwon SY, Seon HJ, et al. Prediction of coronary artery calcium progression by FDG uptake of large arteries in asymptomatic individuals. Eur J Nucl Med Mol Imaging. 2017;44:129–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Kim J, Choi KH, Song HC, Kim JT, Park MS, Cho KH. 18F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients. Eur J Nucl Med Mol Imaging. 2016;43:2228–35.

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Kang DO, Eo JS, Park EJ, Nam HS, Song JW, Park YH, et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehaa1095.

  73. 73.

    Kim EJ, Kim S, Kang DO, Seo HS. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18F-fluorodeoxyglucose positron emission tomograpic imaging. Circ Cardiovasc Imaging. 2014;7:454–60.

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Pahk K, Kim EJ, Joung C, Seo HS, Kim S. Association of glucose uptake of visceral fat and acute myocardial infarction: a pilot 18F-FDG PET/CT study. Cardiovasc Diabetol. 2020;19:145.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Lee JM, Bang JI, Koo BK, Hwang D, Park J, Zhang J, et al. Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging. 2017;10:e006704.

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Kwiecinski J, Berman DS, Lee SE, Dey D, Cadet S, Lassen ML, et al. Three-hour delayed imaging improves assessment of coronary 18F-sodium fluoride PET. J Nucl Med. 2019;60:530–5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Ryoo HG, Paeng JC, Koo BK, Cheon GJ, Lee DS, Kang KW. Clinical implication of 18F-NaF PET/computed tomography indexes of aortic calcification in coronary artery disease patients: correlations with cardiovascular risk factors. Nucl Med Commun. 2020;41:58–64.

    PubMed  Article  Google Scholar 

  78. 78.

    Kim JM, Lee ES, Park KY, Seok JW, Kwon OS. Comparison of [18F]-FDG and [18F]-NaF positron emission tomography on culprit carotid atherosclerosis: a prospective study. JACC Cardiovasc Imaging. 2019;12:370–2.

    PubMed  Article  Google Scholar 

  79. 79.

    Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Chang SA, Choi JY, Kim EK, Hyun SH, Jang SY, Choi JO, et al. [18F]Fluorodeoxyglucose PET/CT predicts response to steroid therapy in constrictive pericarditis. J Am Coll Cardiol. 2017;69:750–2.

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Hyeon CW, Yi HK, Kim EK, Park SJ, Lee SC, Park SW, et al. The role of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography in the differential diagnosis of pericardial disease. Sci Rep. 2020;10:21524.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Park JB, Suh M, Park JY, Park JK, Kim YI, Kim H, et al. Assessment of inflammation in pulmonary artery hypertension by Ga-68-mannosylated human serum albumin. Am J Respir Crit Care Med. 2020;201:95–106.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Lohrke J, Siebeneicher H, Berger M, Reinhardt M, Berndt M, Mueller A, et al. 18F-GP1, a novel PET tracer designed for high-sensitivity, low-background detection of thrombi. J Nucl Med. 2017;58:1094–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Kim C, Lee JS, Han Y, Chae SY, Jin S, Sung C, et al. Glycoprotein IIb/IIIa receptor imaging with 18F-GP1 positron emission tomography for acute venous thromboembolism: an open-label, non-randomized, first-in-human phase 1 study. J Nucl Med. 2019;60:244–9.

    CAS  Article  Google Scholar 

  85. 85.

    Chae SY, Kwon TW, Jin S, Kwon SU, Sung C, Oh SJ, et al. A phase 1, first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res. 2019. https://doi.org/10.1186/s13550-018-0471-8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Lee TK, Hwang H, Na KS, Kwon J, Jeong HS, Oh PS, et al. Effect of angiogenesis induced by consecutive intramuscular injections of vascular endothelial growth factor in a hindlimb ischemic mouse model. Nucl Med Mol Imaging. 2014;48:225–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Lee TK, Lee CM, Hwang H, Jeong HS, Oh PS, Kwon J, et al. Scintigraphic evaluation of therapeutic angiogenesis induced by VEGF-loaded chitosan nanoparticles in a rodent model of hindlimb ischemia. Macromol Res. 2015;23:531–6.

    CAS  Article  Google Scholar 

  88. 88.

    Hwang H, Kwon J, Oh PS, Lee TK, Na KS, Lee CM, et al. Peptide-loaded nanoparticles and radionuclide imaging for individualized treatment of myocardial ischemia. Radiology. 2014;273:160–7.

    PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Einstein AJ, Pascual TNB, Mercuri M, Karthikeyan G, Vitola JV, Mahmarian JJ, et al. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS). Eur Heart J. 2015;36:1689–96.

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Hirschfeld CB, Dondi M, Pascual TNB, Mercuri M, Vitola JV, Karthikeyan G, et al. Worldwide diagnostic reference levels for single-photon emission computed tomography myocardial perfusion imaging: findings from INCAPS. JACC Cardiovasc Imaging. 2020. https://doi.org/10.1016/j.jcmg.2020.06.029.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Hirschfeld CB, Mercuri M, Pascual TNB, Karthikeyan G, Vitola JV, Mahmarian JJ, et al. Worldwide variation in the use of nuclear cardiology camera technology, reconstruction software, and imaging protocols. JACC Cardiovasc Imaging. 2021. https://doi.org/10.1016/j.jcmg.2020.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant (NRF-2016R1D1A3B01006631) from the Basic Science Research Program of the National Research Foundation (NRF) funded by the Ministry of Education, Republic of Korea.

Availability of Data and Materials.

The statistical data in our manuscript will not be shared as they are securely administrated by the Korean Society of Nuclear Medicine (KSNM).

Author information

Affiliations

Authors

Contributions

Sang-Geon Cho and Eun Jung Kong: historical data collection and analyses, primary writing.

Won Jun Kang, Jin Chul Paeng, Hee-Seung Henry Bom, and Ihnho Cho: data review and approval, critical manuscript revisions.

Corresponding author

Correspondence to Ihnho Cho.

Ethics declarations

Conflict of Interest

Hee-Seung Henry Bom received research funding from the NRF, funded by the Ministry of Education, Republic of Korea. Sang-Geon Cho, Eun Jung Kong, Won Jun Kang, Jin Chul Paeng, and Ihnho Cho declare that they have no competing interests.

Ethics Approval and Consent to Participate

This work does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, SG., Kong, E.J., Kang, W.J. et al. KSNM60 in Cardiology: Regrowth After a Long Pause. Nucl Med Mol Imaging (2021). https://doi.org/10.1007/s13139-021-00702-w

Download citation

Keywords

  • Myocardial perfusion imaging
  • Coronary artery disease
  • Single-photon emission computed tomography
  • Positron emission tomography
  • Korea
  • Nuclear medicine