Skip to main content

Advertisement

Log in

Development of GATE Monte Carlo Code for Simulation and Dosimetry of New I-125 Seeds in Eye Plaque Brachytherapy

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Dose distributions are calculated by Monte Carlo (MC) simulations for two low-energy models 125I brachytherapy source—IrSeed-125 and IsoAid Advantage (model IAI-125A)—loaded in the 14-mm standardized plaque of the COMS during treatment of choroid melanoma.

Methods

In this study, at first, the radial dose function in water around 125I brachytherapy sources was calculated based on the recommendations of the Task Group No. 43 American Association of Physicists in Medicine (TG-43U1 APPM) using by GATE code. Then, brachytherapy dose distribution of a new model of the human eye was investigated for a 14-mm COMS eye plaque loaded with these sources with GATE Monte Carlo simulation.

Results

Results show that there are good agreements between simulation results of these sources and reporting measurements and simulations. Dosimetry results in the designed eye phantom for two types of iodine seeds show that the ratios of average dose of tumor to sclera, vitreous, and retina for IrSeed (IsoAid) source are 3.7 (3.7), 6.2 (6.1), and 6.3 (6.3), respectively, which represents the dose saving to healthy tissues. The maximum percentage differences between DVH curve of IsoAid and IrSeed seeds was about 8%.

Conclusions

Our simulation results show that although new model of the 125I brachytherapy source having a slightly larger dimension than IAI-125A, it can be used for eye melanoma treatment because the COMS eye plaque loaded with IrSeed-125 could produce similar results to the IsoAid seeds, which is applicable for clinical plaque brachytherapy for uveal melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology. 2003;110:956–61.

    Article  Google Scholar 

  2. Shields CL, Shields JA. Ocular melanoma: relatively rare but requiring respect. Clin Dermatol. 2009;27:122–33.

    Article  Google Scholar 

  3. Damato B. Developments in the management of uveal melanoma. Clin Exp Ophthalmol. 2004;32:639–47.

    Article  Google Scholar 

  4. Rajabi R, Taherparvar P. Monte Carlo dosimetry for a new 32P brachytherapy source using FLUKA code. J Contemp Brachyther. 2019;11:76–90.

  5. Meigooni AS, Yoe-Sein MM, Al-Otoom AY, Sowards KT. Determination of the dosimetric characteristics of InterSource125 iodine brachytherapy source. Appl Radiat Isot. 2002;56:589–99.

    Article  CAS  Google Scholar 

  6. Rivard MJ. Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 brachytherapy sources. Med Phys. 2009;36:486–91.

    Article  CAS  Google Scholar 

  7. Rodríguez EA, Alcón EP, Rodriguez ML, Gutt F, de Almeida E. Dosimetric parameters estimation using PENELOPE Monte-Carlo simulation code: model 6711 a 125I brachytherapy seed. Appl Radiat Isot. 2005;63:41–8.

    Article  Google Scholar 

  8. Meigooni A. Recent developments in brachytherapy source dosimetry. Iran J Radiat Res. 2004;2:97–105.

  9. Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnology, science and applications. 2010;3:159–70.

  10. Mostafa L, Rachid K, Ahmed SM. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform. Physica Medica. 2016;32:1007–18.

    Article  Google Scholar 

  11. Chiu-Tsao ST, Astrahan MA, Finger PT, Followill DS, Meigooni AS, Melhus CS, et al. Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys. 2012;39:6161–84.

    Article  CAS  Google Scholar 

  12. Nag S, Quivey JM, Earle JD, Followill D, Fontanesi J, Finger PT, et al. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. International Journal of Radiation Oncology* Biology* Physics. 2003;56:544–55.

  13. Krintz A, Hanson WF, Ibbott GS, Followill DS. Verification of plaque simulator dose distribution using radiochromic film. Med Phys. 2002;29:1220–1.

    Google Scholar 

  14. Thomson RM, Rogers DW. Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy with various seed models. Brachytherapy. 2009;8:130–1.

    Article  Google Scholar 

  15. John D, Earle M, Fine SL, Hawkins BS, Straatsma M, Ocular C. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. Arch Ophthalmol. 2001;119:969–82.

    Article  Google Scholar 

  16. Rivard MJ, Chiu-Tsao ST, Finger PT, Meigooni AS, Melhus CS, Mourtada F, et al. Comparison of dose calculation methods for brachytherapy of intraocular tumors. Med Phys. 2011;38:306–16.

    Article  Google Scholar 

  17. Ebrahimi-Khankook A, Vejdani-Noghreiyan A. Dosimetric comparison between realistic ocular model and other models for COMS plaque brachytherapy with 103 Pd, 131 Cs, and 125 I radioisotopes. Radiat Environ Biophys. 2018;57:265–75.

    Article  CAS  Google Scholar 

  18. Knutsen S, Hafslund R, Monge OR, Valen H, Muren LP, Rekstad BL, et al. Dosimetric verification of a dedicated 3D treatment planning system for episcleral plaque therapy. International Journal of Radiation Oncology* Biology* Physics. 2001;51:1159–66.

  19. Yoriyaz H, Sanchez A, Dos Santos A. A new human eye model for ophthalmic brachytherapy dosimetry. Radiat Prot Dosim. 2005;115:316–9.

    Article  CAS  Google Scholar 

  20. Thomson R, Taylor R, Rogers D. Monte Carlo dosimetry for 125I and 103Pd eye plaque. Med Phys.2008;35:5530–43.

  21. Thomson RM, Furutani KM, Pulido JS, Stafford SL, Rogers D. Modified COMS plaques for 125I and 103Pd iris melanoma brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2010;78:1261–9.

  22. Zhang H, Martin D, Chiu-Tsao S-T, Meigooni A, Thomadsen BR. A comprehensive dosimetric comparison between 131Cs and 125I brachytherapy sources for COMS eye plaque implant. Brachytherapy. 2010;9:362–72.

    Article  Google Scholar 

  23. Lesperance M, Martinov M, Thomson R. Monte Carlo dosimetry for 103Pd, 125I, and 131Cs ocular brachytherapy with various plaque models using an eye phantom. Med Phys. 2014;41:031706.

    Article  Google Scholar 

  24. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Saiful Huq M, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31:633–74.

    Article  Google Scholar 

  25. Scott JA. Photon, electron, proton and neutron interaction data for body tissues ICRU report 46. International Commission on Radiation Units and Measurements. J Nucl Med. 1993;34:171.

    Google Scholar 

  26. Cantor L, Rapuano C, Cioffi G. Fundamentals and Principles of Ophthalmology. 2016-2017 American Academy of Ophthalmology-Basic and Clinical Science Course, Section 2016;2:302–26.

  27. Meigooni AS, Hayes JL, Zhang H, Sowards K. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ brachytherapy source. Med Phys. 2002;29:2152–8.

    Article  CAS  Google Scholar 

  28. Taylor R, Rogers D. An EGSnrc Monte Carlo-calculated database of TG-43 parameters. Med Phys. 2008;35:4228–41.

    Article  CAS  Google Scholar 

  29. Lohrabian V, Sheibani S, Aghamiri MR, Ghozati B, Pourbeigi H, Baghani HR. Determination of dosimetric characteristics of irseed 125i brachytherapy source. Iran J Med Phys. 2013;10:109–17.

    Google Scholar 

  30. Nudat N. 2.6, national nuclear data center. Technical report, Brookhaven National Laboratory, http://www.nndc.bnl.gov/exfor/exfor00.htm. Last accessed on http://www-nds.iaea.org/exfor/exfor.htm. 2020;1:14.

  31. Rivard MJ, Granero D, Perez-Calatayud J, Ballester F. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air. Med Phys. 2010;37:869–76.

    Article  CAS  Google Scholar 

  32. Taherparvar P, Sadremomtaz A. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australas Phys Eng Sci Med. 2018;41:31–9.

    Article  Google Scholar 

  33. Thiam C, Breton V, Donnarieix D, Habib B, Maigne L. Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys Med Biol. 2008;53:3039–55.

  34. Aryal P, Molloy JA, Rivard MJ. A modern Monte Carlo investigation of the TG-43 dosimetry parameters for an 125I seed already having AAPM consensus data. Med Phys. 2014;41:021702.

    Article  Google Scholar 

  35. Baghani H, Lohrabian V, Aghamiri MR, Robatjazi M. Monte Carlo determination of dosimetric parameters of a new 125I brachytherapy source according to AAPM TG-43 (U1) protocol. Arch Iran Med. 2016;19:186–91.

  36. Solberg TD, DeMarco JJ, Hugo G, Wallace RE. Dosimetric parameters of three new solid core I-125 brachytherapy sources. J Appl Clin Med Phys. 2002;3:119–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payvand Taherparvar.

Ethics declarations

Conflict of Interest

Payvand Taherparvar and Zeinab Fardi declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

The institutional review board of our institute approved this retrospective study, and the requirement to obtain informed consent was waived

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherparvar, P., Fardi, Z. Development of GATE Monte Carlo Code for Simulation and Dosimetry of New I-125 Seeds in Eye Plaque Brachytherapy. Nucl Med Mol Imaging 55, 86–95 (2021). https://doi.org/10.1007/s13139-020-00680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-020-00680-5

Keywords

Navigation